精英家教网 > 初中数学 > 题目详情
10.计算
(1)-24×($\frac{3}{4}$-$\frac{5}{6}$+$\frac{7}{12}$)
(2)1÷(-3)×(-$\frac{1}{3}$)
(3)(-3)2-(-1$\frac{1}{2}$)3×$\frac{2}{9}$-6÷(-$\frac{2}{3}$)2
(4)(-3)2-[(-$\frac{2}{3}$)+(-$\frac{1}{4}$)]÷$\frac{1}{12}$.

分析 (1)原式利用乘法分配律计算即可得到结果;
(2)原式从左到右依次计算即可得到结果;
(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.

解答 解:(1)原式=-18+20-14=-12;
(2)原式=1×$\frac{1}{3}$×$\frac{1}{3}$=$\frac{1}{9}$;
(3)原式=9+$\frac{27}{8}$×$\frac{2}{9}$-6×$\frac{9}{4}$=9+$\frac{3}{4}$-$\frac{27}{2}$=9-$\frac{51}{4}$=-$\frac{15}{4}$;
(4)原式=9-(-$\frac{2}{3}$-$\frac{1}{4}$)×12=9+8+3=20.

点评 此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.某水果经销商每月购进甲、乙两种水果共120千克,并能全部售出.甲种水果每千克进价18元,售价24元;乙种水果每千克进价12元,售价16元,设购进甲种水果x千克,水果经销商每月所获利润为y元;
(1)y与x的函数关系式是y=2x+480;
(2)某月由于资金紧张,该水果经销商用于购进这两种水果的资金不超过1800元,应该怎样安排甲、乙两种水果的进货量,才能使水果经销商这个月所获的总利润最大?最大总利润是多少元?
(3)甲种水果每千克售价为24元时,其月销售量恰好为90千克,该水果经销商在销售中发现:甲种水果的售价每提高1元,甲种水果的销量就会减少5千克,该水果经销商决定在乙种水果售价不变的情况下,提高甲种水果的售价,且保持两种水果的总销售量120千克不变,求甲种水果售价提高多少元时,可获总利润最大?最大总利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知AD⊥BC,EF⊥BC,∠1=∠2.求证:AB⊥GD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知一个正数的两个平方根分别是3x-2和5x+6,求这个数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知x3+6y2=8,求代数式2x3+12y2-7值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB于点F,连接BN并延长,交DC于点E.连接BM、DN.
(1)求证:四边形MBND为菱形;
(2)求证:△MFB≌△NED.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算
(1)2(x32•x3-(3x33+(5x)2•x7
(2)-23-($\frac{1}{2}$)-2+[2-1×($\frac{1}{2}$)-3×(-$\frac{1}{2}$)0]2
(3)(a+2b)(2a-b)-2a(a+2b);
(4)(2x-3y)2(2x+3y)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示的几何体是由相同的小正方体搭成的,请画出它的主视图、左视图和俯视图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商店销售A、B两种商品,部分销售记录如表所示:
日期A商品B商品金额
周一80件50件2850元
周二40件70件2550元
(1)求A、B两种商品的单价;
(2)该商店为了促销,推出会员卡业务:先付200元办理一张会员卡,凭会员卡在该商店购买商品可以获得8折优惠.若小王购买会员卡并用此卡按需购买A、B两种商品共100件,共用了y元,设A商品买了x件,请求出y与x的函数关系式;
(3)在(2)的条件下,如果小王利用办会员卡购买这100件商品共用了2000元,那么此次购买比不办会员卡购买节省了多少钱?

查看答案和解析>>

同步练习册答案