精英家教网 > 初中数学 > 题目详情

【题目】如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.

(1)若∠A=60°,求BC的长;

(2)若sinA=,求AD的长.

(注意:本题中的计算过程和结果均保留根号)

【答案】(1)6﹣8;(2)

【解析】

试题分析:(1)根据锐角三角函数求得BE和CE的长,根据BC=BE﹣CE即可求得BC的长;(2)根据题意求得AE和DE的长,由AD=AE﹣DE即可求得AD的长.

试题解析:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=

∴∠E=30°,BE=tan60°6=6

又∵∠CDE=90°,CD=4,sinE=,∠E=30°,

∴CE==8,

∴BC=BE﹣CE=6﹣8;

(2))∵∠ABE=90°,AB=6,sinA==

∴设BE=4x,则AE=5x,得AB=3x,

∴3x=6,得x=2,

∴BE=8,AE=10,

∴tanE====

解得,DE=

∴AD=AE﹣DE=10﹣=

即AD的长是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD和BE是高,ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,CBE=BAD.有下列结论:FD=FE;AH=2CD;BCAD=AE2SABC=4SADF.其中正确的有

A.1个 B.2 C.3 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.

(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;

(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.

①试判断四边形AEMF的形状,并证明你的结论;

②求EF的长;

(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,若点A a﹣b)在第一象限内,则点B ab﹣3)所在的象限是(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在¨ABCD中,过点DDE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF

1)求证:四边形BFDE是矩形;

2)若CF=3BF=4DF=5,求证:AF平分∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解4m2﹣n2=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件可以判定△ABC是等腰三角形的是( )

A. 三条边长分别是5, 11,5B. 三条边长分别是 6612

C. 三条边长分别是6,13,6D. 三条边长分别为554

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程2x+a﹣4=0的解是x=﹣2,则a等于(  )

A. -8 B. 0 C. 2 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x=2是一元二次方程x2﹣2a=0的一个根,则a=______

查看答案和解析>>

同步练习册答案