精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=ACtanACB=2DABC内部,且AD=CD,∠ADC=90°,连接BD,若BCD的面积为10,则AD的长为多少?

【答案】5

【解析】

作辅助线构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示ACAM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH,得出DGAG的长度,即可得出答案.

解:过DDHBCH,过AAMBCM,过DDGAMG

CM=a

AB=AC

BC=2CM=2a

tanACB=2

=2

AM=2a

由勾股定理得:AC=a

SBDC=BCDH=10

=10

DH=

∵∠DHM=HMG=MGD=90°

∴四边形DHMG为矩形,

∴∠HDG=90°=HDC+CDGDG=HMDH=MG

∵∠ADC=90°=ADG+CDG

∴∠ADG=CDH

在△ADG和△CDH中,

∴△ADG≌△CDHAAS),

DG=DH=MG=AG=CH=a+

AM=AG+MG

2a=a++

a2=20

RtADC中,AD2+CD2=AC2

AD=CD

2AD2=5a2=100

AD=(舍),

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

1)求直线的解析式.

2)点为直线下方抛物线上的一点,连接.的面积最大时,连接,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.

3)点是线段的中点,将抛物线轴正方向平移得到新抛物线经过点的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:矩形中,,点分别在边上,直线交矩形对角线于点,将沿直线翻折,点落在点处,且点在射线.

1)如图1所示,当时,求的长;

2)如图2所示,当时,求的长;

3)请写出线段的长的取值范围,及当的长最大时的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为rP是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.

(1)当⊙O的半径为1.

①分别判断点M(34)N(0)T(1)关于⊙O的限距点是否存在?若存在,求其坐标;

②点D的坐标为(20)DEDF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;

(2)保持(1)DEF三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(10),半径为r,请从下面两个问题中任选一个作答.

问题1:若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为__________.

问题2:若点P关于⊙C的限距点P′不存在,则r的取值范围为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD是由三个全等矩形拼成的,ACDEEFFGHGHB分别交于点PQKMN,设EPQGKMBNC的面积依次为S1S2S3.若S1+S3=30,则S2的值为( ).

A.6B.8

C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某配餐公司有AB两种营养快餐。一天,公司售出两种快餐共640份,获利2160元。两种快餐的成本价、销售价如下表。

A种快餐

B种快餐

成本价

5/

6/

销售价

8/

10/

1)求该公司这一天销售AB两种快餐各多少份?

2)为扩大销售,公司决定第二天对一定数量的AB两种快餐同时举行降价促销活动。降价的AB两种快餐的数量均为第一天销售AB两种快餐数量的2倍,且A种快餐按原销售价的九五折出售,若公司要求这些快餐当天全部售出后,所获的利润不少于3280元,那么B种快餐最低可以按原销售价打几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示,的直径,点是半圆上的一动点(不与重合),弦平分,过点交射线于点.

1)求证:相切:

2)若,求长;

3)若长记为长记为,求之间的函数关系式,并求出的最大值.

查看答案和解析>>

同步练习册答案