精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCDDEFG都是正方形,ABCG交于点下列结论:其中正确的有______

【答案】

【解析】

根据正方形的性质可得,然后求出,再利用“边角边”证明全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点DEGM四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.

四边形ABCDDEFG都是正方形,

中,

,故正确;

,故正确;

是正方形DEFG的对角线的交点,

,故正确;

DEGM四点共圆,

,故正确;

不成立,故错误;

综上所述,正确的有

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面的材料:

在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数yk1xb1k1≠0)的图象为直线l1,一次函数yk2xb2k2≠0)的图象为直线l2,若k1k2,且b1≠b2,我们就称直线l1与直线l2互相平行.

解答下面的问题:

1)求过点P14)且与已知直线y=-2x1平行的直线的函数表达式,并画出直线l的图象;

2)设直线l分别与y轴、x轴交于点AB,如果直线ykxt ( t0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD内的一点,点BC边的下方,连接AE,BE,CE,,且,则 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于 EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是(  )

A.AG平分∠DAB
B.AD=DH
C.DH=BC
D.CH=DH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知 P是线段 AB上的一点,,C, D两点从 A, P同时出发,分别以2 ,1的速度沿 AB方向运动,当点 D到达终点 B时,点C也停止运动,设AB= ,点 C,D的运动时间为

(1)用含 的代数式表示线段 CP 的长度.

(2) t =5时,,求线段 AB的长.

(3) BC-AC=PC时,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

1)作ABC关于点C成中心对称的A1B1C1

2)将A1B1C1向右平移4个单位,作出平移后的A2B2C2

3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.

(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2 ,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交ABD,AE平分∠BACBCE,连接DE,DF⊥BCF,则∠EDC=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO

(1)求直线AB的解析式;

(2)求三角形AOC的面积.

查看答案和解析>>

同步练习册答案