精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O的直径AB为10,弦AC为6,CD平分∠ACB,则BC=
 
,∠ABD=
 
°.
分析:由于CD是∠ACB的角平分线,那么∠ACD=∠BCD,而AB是直径,那么∠ACB=90°,于是∠ACD=∠BCD=45°,根据同圆中同弧所对的圆周角相等,那么有∠ABD=∠ACD=45,在Rt△ABC中,利用勾股定理可求BC.
解答:解:∵CD平分∠ACB,
∴∠ACD=∠BCD,
又∵AB是直径,
∴∠ACB=90°,
∴∠ACD=∠BCD=45°,
在Rt△ABC中,AB=10,AC=6,
∴BC=
AB2-AC2
=
102-62
=8.
点评:本题利用了同圆中同弧所对的圆周角相等、勾股定理、角平分线的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案