【题目】如图,△ABC中,∠A=60°,P为AB上一点, Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D, PD=DQ,证明:△ABC为等边三角形.
科目:初中数学 来源: 题型:
【题目】请你阅读下列计算过程,再回答所提出的问题:
题目计算
解:原式= (A)
= (B)
=x-3-3(x+1) (C)
=-2x-6 (D)
(1)上述计算过程中,从哪一步开始出现错误:_______________
(2)如果假设基于之前步骤正确的前提下,从B到C是否正确,若不正确,错误的原因是____________________________________________________
(3)请你正确解答。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为______(请将所有正确的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一段圆柱体的树干的示意图,已知树干的半径r=10cm,AD=45cm. (π值取3)
(1)若螳螂在点A处,蝉在点C处,图1中画出了螳螂捕蝉的两条路线,即A→D→C和A→C,图2是该圆柱体的侧面展开图,判断哪条路的距离较短,并说明理由;
(2)若螳螂在点A处,蝉在点D处,螳螂想要捕到这只蝉,但又怕蝉发现,于是螳螂绕到
后方去捕捉它,如图3所示,求螳螂爬行的最短距离;(提示: =75)
(3)图4是该圆柱体的侧面展开图,蝉N在半径为10cm的⊙O的圆上运动,⊙O与BC相切,点O到CD的距离为20cm,螳螂M在线段AD运动上,连接MN,MN即为螳螂捕蝉时螳螂爬行的距离,若要使MN与⊙O总是相切,求MN的长度范围.
图1 图2 图3 图4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.
(1)如果∠DEF=123°,求∠BAF的度数;
(2)判断△ABF和△AGE是否全等吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com