精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、O、B在一条直线上,OF是∠AOE的平分线,OD是∠BOE的平分线.若∠DOB=28°,求∠EOF的度数.

【答案】62°

【解析】

先根据∠DOB+AOD=180°求出∠AOD的度数,再根据角平分线的性质求出∠BOE的度数,由平角的性质可求出∠AOE的度数,OF是∠AOE的平分线即可求出∠EOF的度数.

∵∠DOB+AOD=180°, DOB=28°,
∴∠AOD=152°;
OD是∠BOE的平分线,DOB=28°,
∴∠BOE=2BOD=2×28°=56°,
∴∠AOE=180°-BOE=180°-56°=124°,
OF是∠AOE的平分线,
∴∠EOF=AOE=×124°=62°.
故答案为:62°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1分别与x轴、y轴交于点B、C,且与直线l2交于点A.

(1)求出点A的坐标

(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式

(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E,F,G,H分别是边AB,DC,BC,AD上的点,且AE=CF,BG=DH.求证:EF与GH互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】常数a,b,c在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+c=0根的情况是(
A.有两个相等的实数根
B.有两个不相等的实数根
C.无实数根
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1 , l2 , 过点(1,0)作x轴的垂线交l1于点A1 , 过点A1作y轴的垂线交l2于点A2 , 过点A2作x轴的垂线交l1于点A3 , 过点A3作y轴的垂线交l2于点A4 , …依次进行下去,则点A2017的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果∠α和∠β互补,且∠α>β,则下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正确的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为1的小正方形网格中,点A,B,C均落在格点上.

(1)猜想△ABC的形状   ,并证明;

(2)直接写出△ABC的面积=   

(3)画出△ABC关于直线l的轴对称图形△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.

(1)求证:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,则称点M△ABC的费马点.若点M△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;

(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图,分别以△ABCAB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是(  )

A.3m
B.3m
C.4m
D.m

查看答案和解析>>

同步练习册答案