精英家教网 > 初中数学 > 题目详情

【题目】规定sin(-x)=-sinxcos(-x)=cosxsinx+y)=sinx·cosycosx·siny.据此判断下列等式成立的是_________(填序号)

cos(-60°)=—cos60°=

sin75°sin30°+45°=sin30°·cos45°+cos30°·sin45°=

③sin2xsinx+x)=sinx·cosx+cosx·sinx2sinx·cosx

④sinxy)=sinx·cosycosx·siny

【答案】②③④

【解析】试题解析:cos-60°=cos60°=,命题错误;

sin75°=sin30°+45°=sin30°cos45°+cos30°sin45°

×+=,命题正确;

sin2x=sinxcosx+cosxsinx=2sinxcosx,命题正确;

sinx-y=sinxcos-y+cosxsin-y=sinxcosy-cosxsiny,命题正确.

故答案为:②③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC的面积为24,点D在线段AC上,点D在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,,,线段经过平移得到线段,其中点的对应点为点,点D在第一象限,直线AC轴于点

1)点D坐标为

2)线段由线段经过怎样平移得到?

3)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AC=BCC=90°ADABC的角平分线,DEAB,垂足为E

1)已知CD=4cm,求AC的长;

2)求证:AB=AC+CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1□ABCD的对角线ACBD相交于点O,且AEBDBEACOECD

1)求证:四边形 ABCD 是菱形;

2)若∠ADC60°BE2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】423日是世界读书日,某校为了营造读书好、好读书、读好书的书香校园,决定采购《简·爱》、《小词大雅》两种图书供学生阅读,通过了解,购买2本《简·爱》和3本《小词大雅》共需168元,购买3本《简·爱》和2本《小词大雅》共需172元.

1)求一本《简·爱》和《小词大雅》的价格分别是多少元;

2)若该校计划购买两种图书共300本,其中《简·爱》的数量不多于《小词大雅》数量,且不少于100件.购买《简·爱》m本,求总费用W元与m之间的函数关系式,并写出m的取值范围;

3)在(2)的条件下,学校在团购书籍时,商家店铺中《简·爱》正进行书籍促销活动,每本书箱降价a元(0< a 8),求学校购书的的最低总费用W1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy反比例函数的图象经过点A14),Bmn).

1)求反比例函数的解析式

2)若二次函数的图象经过点B求代数式的值

3)若反比例函数的图象与二次函数的图象只有一个交点且该交点在直线yx的下方结合函数图象a的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<

【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到ba的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.

试题解析:(1)∵抛物线有一个公共点M(1,0),

a+a+b=0,即b=2a

∴抛物线顶点D的坐标为

(2)∵直线y=2x+m经过点M(1,0),

0=2×1+m,解得m=2,

y=2x2,

(x1)(ax+2a2)=0,

解得x=1

N点坐标为

a<b,即a<2a

a<0,

如图1,设抛物线对称轴交直线于点E

∵抛物线对称轴为

设△DMN的面积为S

(3)a=1时,

抛物线的解析式为:

解得:

G(1,2),

∵点GH关于原点对称,

H(1,2),

设直线GH平移后的解析式为:y=2x+t

x2x+2=2x+t

x2x2+t=0,

=14(t2)=0,

当点H平移后落在抛物线上时,坐标为(1,0),

(1,0)代入y=2x+t

t=2,

∴当线段GH与抛物线有两个不同的公共点,t的取值范围是

型】解答
束】
26

【题目】摇椅是老年人很好的休闲工具,右图是一张摇椅放在客厅的侧面示意图,摇椅静止时,以O为圆心OA为半径的的中点P着地,地面NP与相切,已知AOB=60°,半径OA=60cm,靠背CD与OA的夹角ACD=127°,C为OA的中点,CD=80cm,当摇椅沿滚动至点A着地时是摇椅向后的最大安全角度.

(1)静止时靠背CD的最高点D离地面多高?

(2)静止时着地点P至少离墙壁MN的水平距离是多少时?才能使摇椅向后至最大安全角度时点D不与墙壁MN相碰.

(精确到1cm,参考数据π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)

查看答案和解析>>

同步练习册答案