精英家教网 > 初中数学 > 题目详情
4.如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连结BE.
(1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由;
(2)若延长BE至F,使得CF=CE=5,如图2,问:求出此时AP的长;
(3)当点P在线段AD的延长线上时,F为线段BE上一点,使得CF=CE=5.求EF的长

分析 (1)证出∠ACP=∠BCE.由SAS证明△ACP≌△BCE,得出对应边相等即可.
(2)过点C作CH⊥BE,垂足为H.由等边三角形的性质得出∠CAD=∠BAD=$\frac{1}{2}$∠BAC=30°.由(1)可知:△ACP≌△BCE,得出∠CBE=∠CAD=30°,AP=BE.由含30°角的直角三角形的性质得出HC=$\frac{1}{2}$BC=3,由勾股定理得出BH=$\frac{\sqrt{3}}{2}$BC=3$\sqrt{3}$.在Rt△CEH中,由勾股定理求出EH=$\sqrt{C{E}^{2}-C{H}^{2}}$=4,即可得出AP的长.
(3)过点C作CH⊥BE,垂足为H.由SAS证明△ACP≌△BCE,得出∠CBH=∠CAP=30°.由含30°角的直角三角形的性质得出HC=$\frac{1}{2}$BC=3.与等腰三角形的性质求出FH=EH.由勾股定理求出FH,即可得出EF的长.

解答 解:(1)BE=AP;理由如下:
∵△ABC和△CPE均为等边三角形,
∴∠ACB=∠PCE=60°,AC=BC,CP=CE.
∵∠ACP+∠DCP=∠DCE+∠PCD=60°,
∴∠ACP=∠BCE.
∵在△ACP和△BCE中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠ACP=∠BCE}&{\;}\\{CP=CE}&{\;}\end{array}\right.$,
∴△ACP≌△BCE(SAS).
∴BE=AP.
(2)如图2所示:过点C作CH⊥BE,垂足为H.∵AB=AC,AD是BC的中点,
∴∠CAD=∠BAD=$\frac{1}{2}$∠BAC=30°.
∵由(1)可知:△ACP≌△BCE,
∴∠CBE=∠CAD=30°,AP=BE.
∵在Rt△BCH中,∠HBC=30°,
∴HC=$\frac{1}{2}$BC=3,BH=$\frac{\sqrt{3}}{2}$BC=3$\sqrt{3}$.
∵在Rt△CEH中,EC=5,CH=3,
∴EH=$\sqrt{C{E}^{2}-C{H}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.
∴BE=HB-EH=3$\sqrt{3}$-4.
∴AP=3$\sqrt{3}$-4.
(3)如图3所示:过点C作CH⊥BE,垂足为H.
∵△ABC和△CEP均为等边三角形,
∴AC=BC,CE=PC,∠ACB=∠ECP.
∴∠ACB+∠BCP=∠ECP+BCP,即∠BCE=∠ACP.
∵在△ACP和△BCE中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠ACP=∠BCE}&{\;}\\{CP=CE}&{\;}\end{array}\right.$,
∴△ACP≌△BCE(SAS).
∴∠CBH=∠CAP=30°.
∵在Rt△BCH中,∠CBH=30°,
∴HC=$\frac{1}{2}$BC=3.
∵FC=CE,CH⊥FE,
∴FH=EH.
∴FH=EH=$\sqrt{C{E}^{2}-C{H}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.
∴EF=FH+EH=4+4=8.

点评 本题主要考查的是全等三角形的性质和判定、勾股定理的应用、等边三角形的性质、含30°的直角三角形的性质;本题综合性强,有一定难度,证得△ACP≌△BCE是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列命题中错误的命题为(  )
A.圆既是轴对称图形,也是中心对称图形
B.在同圆或等圆中,长度相等的弧是等弧
C.三角形的外心到三角形三边距离相等
D.垂直于弦的直径平分这条弦

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15..计算:
(1)-1$\frac{1}{5}$×(-1$\frac{2}{3}$)÷2$\frac{1}{3}$-1$\frac{1}{5}$.
(2)1-[-$\frac{1}{5}$+(1-$\frac{1}{3}$×0.6)÷(-2)2].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.多项式3x3y-2x2y3-5是五次三项式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.某品牌服装原价为980元,经过连续两次降价a%后售价为380元,则下面所列方程正确的是(  )
A.980(1-2a%)=380B.980(1-a%)=380C.980(1-a%)2=380D.980(1+a%)2=380

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为9米.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列方程中是关于x的一元二次方程的是(  )
A.$\frac{1}{x^2}+\frac{1}{x}=2$B.ax2+bx+c=0C.x2-2x-3=0D.x2+2x=x2-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.关于x的方程x2+kx-1=0的根的情况是(  )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.国家统计局数据显示,截至2014年末全国商品房待售面积约为62200万平方米,该数据用科学记数法可表示为6.22×108平方米.

查看答案和解析>>

同步练习册答案