精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:(1)a+b+c<0;(2)a+b+c>0;(3)abc>0;(4)4a-2b+c<0;(5)c-a>1,其中正确的是


  1. A.
    (1)(2)
  2. B.
    (1)(3)(4)
  3. C.
    (1)(3)(5)
  4. D.
    (1)(2)(3)(4)(5)
C
分析:由于x=1时,y<0,则a+b+c<0,可对(1)(2)进行判断;由抛物线开口向下得a<0,由抛物线的对称轴在y轴的左侧得到b<0,由抛物线与y轴的交点在x轴上方,
得c>0,则abc>0;当x=-2时,y>0,则4a-2b+c>0,可对(4)进行判断;由于x=-=-1,则b=2a,且x=-1时,y最大值=a-b+c=a-2a+c=c-a,可对(5)进行判断.
解答:当x=1时,y<0,则a+b+c<0,所以(1)正确,(2)错误;
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的左侧,
∴x=-<0,
∴b<0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc>0,所以(3)正确;
当x=-2时,y>0,则4a-2b+c>0,所以(4)错误;
∵x=-=-1,
∴b=2a,
∵x=-1时,y最大值=a-b+c=a-2a+c=c-a,
∴c-a>1,所以(5)正确.
故选C.
点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案