精英家教网 > 初中数学 > 题目详情

已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是


  1. A.
    没有实数根
  2. B.
    可能有且只有一个实数根
  3. C.
    有两个相等的实数根
  4. D.
    有两个不相等的实数根
A
分析:由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.
能够根据三角形的三边关系,得到关于a,b,c的式子的符号.
解答:∵△=(2c)2-4(a+b)2=4[c2-(a+b)2]=4(a+b+c)(c-a-b),
根据三角形三边关系,得c-a-b<0,a+b+c>0.
∴△<0.
∴该方程没有实数根.
故选A.
点评:本题是方程与几何的综合题.
主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2-4(a+b)(a+b)进行因式分解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、已知三角形的各边长分别是8cm、10cm和12cm,则以各边中点为顶点的三角形的周长为
15
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:△ABC的顶点坐标分别是A(2,5)、B(3,2)、C(-2,0),求△ABC的面积.(建立坐标系,在坐标系中画出△ABC)

查看答案和解析>>

科目:初中数学 来源: 题型:

1、填空:
(1)在圆周上有7个点A,B,C,D,E,F和G,连接每两个点的线段共可作出
21
条.
(2)已知5条线段的长分别是3,5,7,9,11,若每次以其中3条线段为边组成三角形,则最多可构成互不全等的三角形
7
个.
(3)三角形的三边长都是正整数,其中有一边长为4,但它不是最短边,这样不同的三角形共有
5
个.
(4)以正七边形的7个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是
14

(5)平面上10条直线最多能把平面分成
56
个部分.
(6)平面上10个圆最多能把平面分成
92
个区域.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知梯形两底的长分别是3.6和6,高线长是0.3,则它的两腰延长线的交点到较长底边所在直线的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=
50
50
°.

查看答案和解析>>

同步练习册答案