·ÖÎö £¨1£©¸ù¾ÝÖ±ÏߵĽâÎöʽµÃµ½µãC£¨0£¬$\sqrt{3}$£©£¬°ÑµãB£¨1£¬0£©ÓëµãC£¨0£¬$\sqrt{3}$£©´úÈëy=-$\frac{\sqrt{3}}{3}$x2+bx+c£¬ÓÚÊǵõ½½áÂÛ£»
£¨2£©¢ÙÁ¬½ÓOQ£¬ÔÚÖ±Ïßy=x+$\sqrt{3}$ÖУ¬Áîy=0£¬Ôòx=-$\sqrt{3}$£¬µÃµ½µãA£¨-$\sqrt{3}$£¬0£©£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃµ½½áÂÛ£»
¢Ú½âÖ±½ÇÈý½ÇÐεõ½¡ÏCBO=60¡ã£¬×÷Ö±¾¶ET½»¡ÑIÓÚµãT£¬Á¬½ÓFT£¬Ôò¡ÏEFT=90¡ã£¬µÃµ½EF=ET•sin60¡ã=$\frac{\sqrt{3}}{2}$ET£¬µ±BD¡ÍACʱ£¬´Ëʱֱ¾¶BD×îС£¬¼´Ö±¾¶ET×îС£¬EFµÄÖµ×îС£¬ÍƳö¡ÏCAO=45¡ã£¬ÔÚRt¡÷ADBÖУ¬¸ù¾ÝÈý½Çº¯ÊýµÄ¶¨Òå¼´¿ÉµÃµ½½áÂÛ£®
½â´ð
½â£º£¨1£©ÔÚÖ±Ïßy=x+$\sqrt{3}$ÖУ¬Áîx=0£¬Ôòy=$\sqrt{3}$£¬
¡àµãC£¨0£¬$\sqrt{3}$£©£¬
°ÑµãB£¨1£¬0£©ÓëµãC£¨0£¬$\sqrt{3}$£©´úÈëy=-$\frac{\sqrt{3}}{3}$x2+bx+c£¬µÃ£º$\left\{\begin{array}{l}c=\sqrt{3}\\-\frac{{\sqrt{3}}}{3}+b+c=0\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}b=-\frac{{2\sqrt{3}}}{3}\\ c=\sqrt{3}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x+$\sqrt{3}$£»
£¨2£©¢ÙÁ¬½ÓOQ£¬ÔÚÖ±Ïßy=x+$\sqrt{3}$ÖУ¬Áîy=0£¬Ôòx=-$\sqrt{3}$£¬
¡àµãA£¨-$\sqrt{3}$£¬0£©£¬
¡ßS¡÷AQC=S¡÷AOQ+S¡÷OCQ-S¡÷AOC£¬
¡àS=$\frac{1}{2}¡Á\sqrt{3}$£¨-$\frac{\sqrt{3}}{3}$t2-$\frac{2\sqrt{3}}{3}$t+$\sqrt{3}$£©+$\frac{1}{2}$¡Á$\sqrt{3}$•£¨-t£©-$\frac{1}{2}¡Á\sqrt{3}¡Á\sqrt{3}$£¬
¡àS=-$\frac{1}{2}$t2-$\frac{2+\sqrt{3}}{2}$t£¬¼´S=0$\frac{1}{2}$£¨t+$\frac{2+\sqrt{3}}{2}$£©2+$\frac{7+4\sqrt{3}}{8}$£¬£¨-3£¼t£¼0£©£®
¡àµ±t=-$\frac{2+\sqrt{3}}{2}$ʱ£¬${S_{×î´óÖµ}}=\frac{{7+4\sqrt{3}}}{8}$£»
¢Ú¡ßµãB£¨1£¬0£©£¬C£¨0£¬$\sqrt{3}$£©£¬¡àOB=1£¬OC=$\sqrt{3}$£¬£®
ÔÚRt¡÷BOCÖУ¬tan¡ÏCBO=$\frac{OC}{OB}$=$\sqrt{3}$£¬
¡à¡ÏCBO=60¡ã£¬
×÷Ö±¾¶ET½»¡ÑIÓÚµãT£¬Á¬½ÓFT£¬Ôò¡ÏEFT=90¡ã£¬
ÓÖ¡ÏFTE=¡ÏCBO=60¡ã£¬sin¡ÏFTE=$\frac{EF}{ET}$£¬EF=ET•sin60¡ã=$\frac{\sqrt{3}}{2}$ET£¬
µ±BD¡ÍACʱ£¬´Ëʱֱ¾¶BD×îС£¬¼´Ö±¾¶ET×îС£¬EFµÄÖµ×îС£¬
ÔÚRt¡÷AOCÖУ¬OA=OC=$\sqrt{3}$£¬
¡à¡ÏCAO=45¡ã£¬
ÔÚRt¡÷ADBÖУ¬BD=AB•sin¡ÏCAO=ABsin45¡ã=|1-£¨-$\sqrt{3}$£©|sin45¡ã=$\frac{\sqrt{2}+\sqrt{6}}{2}$£¬
¡àEF=$\frac{\sqrt{3}}{2}$ET=$\frac{\sqrt{3}}{2}$BD=$\frac{\sqrt{3}}{2}$¡Á$\frac{\sqrt{2}+\sqrt{6}}{2}$=$\frac{\sqrt{6}+3\sqrt{2}}{4}$£¬
´ËʱµãQµÄ×ø±êΪ£¨$\sqrt{3}$-3£¬4-$\sqrt{3}$£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄÐÔÖʺÍ×î´óÖµ£¬½âÖ±½ÇÈý½ÇÐΣ¬Èý½ÇÐεÄÃæ»ýµÄ¼ÆË㣬ÕýÈ·µÄ×÷³öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 40¡ã | B£® | 50¡ã | C£® | 60¡ã | D£® | 65¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | |a|£¼1 | B£® | |a|£¾1 | C£® | |b|£¼1 | D£® | ab£¾0 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com