【题目】如图,点H在平行四边形ABCD的边DC延长线上,连结AH分别交BC、BD于点E,F.求证: .
【答案】证明:∵四边形ABCD是平行四边形, ∴AB∥DC,∠ABE=∠ADH,
∴∠BAE=∠H,
∴△ABE∽△HDA,
∴ .
【解析】先根据平行四边形的性质得出AB∥DC,∠ABE=∠ADH,故可得出∠BAE=∠H,由此可得出△ABE∽△HDA,据此可得出结论.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】阅读下列材料: “怀山俊秀,柔水有情”﹣怀柔,一直受到世人的青睐.早在上世纪90年代,联合国第4届世界妇女大会NGO论坛的举办使怀柔蜚声海内外,此后,随着世界养生大会、国际青少年嘉年华、全国汽车拉力赛等一系列活动赛事的成功举办,为这座国际交往新城聚集了庞大的人气.2014年11月11日,全世界的眼光再次聚焦在北京怀柔雁栖湖,这里成功举办了第22次APEC领导人峰会.现如今怀柔已成为以自然风光游为基础,休闲度假游、乡村美食游、满族风情游为特色,影视文化游、健身养生游、竞技赛事游为时尚的多元化旅游胜地.
随着怀柔旅游业的迅速发展,也带动了怀柔的经济收入.据统计,2011年全年接待游客1047万人次,比上一年增长5.3%;2012年全年接待游客1085万人次,比上一年增长3.7%; 2013年全年接待游客1107.6万人次,比上一年增长2%; 2014年全年接待游客1135万人次,比上一年增长2.4%;2015年全年接待游客1297.4万人次,比上一年增长14.3%.(以上数据来源于怀柔信息网)根据以上材料解答下列问题:
(1)用折线图将2011﹣2015年怀柔区全年接待游客量表示出来,并在图中标明相应数据;
(2)根据绘制的折线图中提供的信息,预估 2016年怀柔区全年接待游览客量约万人次,你的预估理由是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l与x轴相交于点M(3,0),与y轴相交于点N(0,﹣1),反比例函数y= (x>0)的图象经过线段MN的中点A.
(1)求直线l和反比例函数的解析式;
(2)在函数y= (x>0)的图象上取不同于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P,若△ONP的面积是△OBC的面积的3倍,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C,连接AC,BC.
(1)求该抛物线的解析式;
(2)若点P是x轴上的一动点,且位于AB之间,过点P作PE∥AC,交BC于E,连接CP,设P点横坐标为x,△PCE的面积为S,请求出S关于x的解析式,并求△PCE面积的最大值;
(3)点为D(﹣2,0),若点M是线段AC上一动点,是否存在M点,能使△OMD是等腰三角形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为 .
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4. 如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com