精英家教网 > 初中数学 > 题目详情

在括号内填写理由.

如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.

证明:∵∠B+∠BCD=180°(      ),

∴AB∥CD (      

∴∠B=∠DCE(      

又∵∠B=∠D(      ),

∴∠DCE=∠D (      

∴AD∥BE(      

∴∠E=∠DFE(      


【考点】平行线的判定与性质.

【专题】推理填空题.

【分析】根据平行线的判定和平行线的性质填空.

【解答】证明:∵∠B+∠BCD=180°(已知),

∴AB∥CD (同旁内角互补,两直线平行)

∴∠B=∠DCE(两直线平行,同位角相等)

又∵∠B=∠D(已知),

∴∠DCE=∠D (等量代换)

∴AD∥BE(内错角相等,两直线平行)

∴∠E=∠DFE(两直线平行,内错角相等).

【点评】本题利用平行线的判定和平行线的性质填空,主要在于训练证明题的解答过程.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在矩形ABCD中,对角线AC、BD相交于点O,∠BOC=120°,AB=5,则BD的长为                  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线y=﹣x+分别交x轴、y轴于A、B两点,经过点A的直线m⊥x轴,直线l经过原点O交线段AB于点C,过点C作OC的垂线,与直线m相交于点P,现将直线l绕O点旋转,使交点C在线段AB上由点B向点A方向运动.

(1)填空:A(            )、B(            

(2)直线DE过点C平行于x轴分别交y轴与直线m于D、E两点,求证:△ODC≌△CEP;

(3)若点C的运动速度为每秒单位,运动时间是t秒,设点P的坐标为(,a)

①试写出a关于t的函数关系式和变量t的取值范围;

②当t为何值时,△PAC为等腰三角形并求出点P的坐标.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


函数中,自变量x的取值范围是      

查看答案和解析>>

科目:初中数学 来源: 题型:


点P(﹣3,5)所在的象限是(  )

A.第一象限 B.第二象限  C.第三象限 D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:


化简||+|1﹣|﹣|3﹣π|

查看答案和解析>>

科目:初中数学 来源: 题型:


把“对顶角相等”改写成“如果…那么…”的形式是:      

查看答案和解析>>

科目:初中数学 来源: 题型:


某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.

(1)符合题意的组建方案有几种?请你帮学校设计出来;

(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为      cm2

查看答案和解析>>

同步练习册答案