分析 (1)根据等边三角形的性质推出∠DEC=∠ACE=60°,求出∠EPC,根据等边三角形的判定推出即可;
(2)根据等边三角形的性质得出AC=DE,根据SAS证△ACF≌△DEB,即可推出答案.
解答 (1)解:△PCE是等边三角形,
理由是:∵△ABC、△DEF是全等的等边三角形,
∴∠DEC=∠ACE=60°,
∴∠EPC=180°-∠DEC-∠ACE=180°-60°-60°=60°,
∴△PCE是等边三角形.
(2)证明:∵△ACB与△DEF是等边三角形,
∴AC=DE,∠ACF=∠DEB=120°,FC=BE,
在△AFC和△DBE中,
$\left\{\begin{array}{l}{AC=DE}\\{∠ACF=∠DEB}\\{FC=BE}\end{array}\right.$,
∴△AFC≌△DBE,
∴AF=BD.
点评 本题考查了等边三角形的性质和判定,全等三角形的性质和判定的应用,运用定理进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -6 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com