精英家教网 > 初中数学 > 题目详情

已知△ABC是等腰三角形,过△ABC的一个顶点的一条直线,把△ABC分成两个小三角形,如果这两个小三角形也是等腰三角形,试求出各内角的度数. (不止1个哟!)

解:一共有4种可能如下:
①△ABC是等腰三角形,AB=AC,线段AD是过定点A的,
根据题意,由于△ABD、△ACD是等腰三角形,且AD=BD,AD=CD,
那么∠B=∠BAD=∠CAD=∠C,
利用三角形内角和定理,可知∠B+∠BAD+∠CAD+∠C=180°,
解得∠B=∠BAD=∠CAD=∠C=45°,∠BAC=90°;

②如图所示,①△ABC是等腰三角形,AB=AC,线段AD是过定点A的,
根据题意,由于△ABD、△ACD是等腰三角形,且AB=BD,AD=CD,
那么有∠B=∠C,∠DAC=∠C,∠BAD=∠BDA,所以∠BDA=2∠C,
根据∠B+∠C+∠BAC=180°,可得2∠B+3∠B=180°,
解得∠B=36°,则有∠C=36°,∠BAC=108°;

③如图所示,①△ABC是等腰三角形,AB=AC,线段BD是过顶点B的,
根据题意,由于△ABD、△BCD是等腰三角形,且AD=BD,BD=BC,
那么有∠ABC=∠C,∠ABD=∠A,∠BDC=∠C,
利用外角性质有∠BDC=2∠A,再利用三角形内角和定理可得5∠A=180°,
解得∠A=36°,则∠ABC=∠C=72°;

④如图所示,①△ABC是等腰三角形,AB=AC,线段BD是过顶点B的,
根据题意,由于△ABD、△BCD是等腰三角形,且AD=BD,BC=CD,
那么有∠ABC=∠C,∠ABD=∠A,∠DBC=∠CDB,
根据外角性质有∠BDC=2∠A,再结合三角形内角和定理有7∠A=180°,
解得∠A=()°,从而易求∠ABC=∠C=()°.

分析:根据题意,画出图形,分4种情况,然后根据图形结合三角形的有关性质,具体求解即可.
点评:本题考查了等腰三角形的性质、三角形外角的性质、三角形内角和定理、分类讨论.注意考虑要全面,任何一边都可能是腰.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

科目:初中数学 来源:2011年广东省湛江市中考数学模拟试卷(五)(解析版) 题型:解答题

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

科目:初中数学 来源:2010年广东省湛江市中考数学模拟试卷(一)(解析版) 题型:解答题

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省盐城市盐城中学初三年级中考模拟数学试卷1(解析版) 题型:解答题

如图,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.
(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

查看答案和解析>>

同步练习册答案