【题目】如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB相交于点C,AC的延长线与⊙O相交于点D.设线段AB的长为x,线段OC的长为y.
(1)求y关于x的函数解析式,并写出定义域;
(2)当四边形ABDO是梯形时,求线段OC的长.
【答案】(1),定义域为;(2)OC的长为或
【解析】试题分析:由相似三角形的判定定理得出△ABC∽△OAB,根据相似三角形的性质得出BC,再由OC=OB–BC得出y关于x的函数解析式;(2)由梯形的性质分情况讨论:当OD//A B时,由相似三角形对应边成比例得出AB的值,进而得出OC的长; ②当BD//OA时, 设∠ODA= ,由两直线平行内错角相等和等边对等角得到∠ADB=α,由同弧所对的圆周角是圆心角的一半得到∠AOB=2α,由三角形外交性质和等边对等角得到∠OAB=∠OBA=,由三角形内角和定理得到∠BOA=45°,∠BOD=90°,可得BD值,由三角形相似对应边成比例得y值,进而得到OC长.
试题解析:解:(1)在⊙O与⊙A中,∵OA=OB,AB=AC,∴∠ACB =∠ABC=∠OAB.
∴△ABC∽△OAB.
∴,∴,
∴,∵OC=OB–BC,∴y关于x的函数解析式,
定义域为.
(2)①当OD//A B时,∴,∴,
∴,∴,
∴(负值舍去).
∴AB=,这时ABOD,符合题意.
∴OC=.
②当BD//OA时,设∠ODA= ,∵BD//OA,OA=OD,∴∠BDA=∠OAD=∠ODA= ,
又∵OB=OD,∴∠BOA=∠OBD=∠ODB=.
∵AB=AC,OA=OB,∴∠OAB=∠ABC=∠ACB=∠COA+∠CAO=.
∵∠AOB+∠OAB+∠OBA=180°,∴,
∴,∠BOA=45°.
∴∠ODB=∠OBD=45°,∠BOD=90°,∴BD=. ∵BD//OA,∴.
∴,∴. .
由于BDOA, 符合题意.
∴当四边形ABDO是梯形时,线段OC的长为或.
或:过点B作BH⊥OA,垂足为H, BH=OH=,AH=2–,
∴.
∴.
科目:初中数学 来源: 题型:
【题目】已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:下列说法中,错误的是( )
A.方程ax+b=0的解是x=-1
B.不等式ax+b>0的解集是x>-1
C.y=ax+b的函数值随自变量的增大而增大
D.y=ax+b的函数值随自变量的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知长方形OABC,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2016次碰到长方形的边时,点P2016的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com