【题目】如图所示,AD是△ABC的中线,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC长度的取值范围;
(2)求EF的长度.
【答案】(1)2<AC<10;(2)EF= 6.
【解析】
(1)延长AD到M,使得AD=DM,连接MC,由“SAS”可得△ABD≌△MCD,可得AB=MC=4,∠BAD=∠M,由三角形三边关系可求解;
(2)由“SAS”可证△AEF≌△CMA,可得EF=AM=6.
(1)延长AD到M,使得AD=DM,连接MC,
∴AD=DM,AM=2AD=6,
∵AD是△ABC的中线,
∴BD=CD,
∵在△ABD和△MCD中,
,
∴△ABD≌△MCD(SAS),
∴AB=MC=4,∠BAD=∠M,
∵AM-MC<AC<AM+MC
∴2AD-MC<AC<2AD+MC
∴2<AC<10
(2)∵AB=AE,
∴AE=MC,
∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,
∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,
∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,
∴∠EAF=∠MCA.
∵在△AEF和△CMA中,
,
∴△AEF≌△CMA(SAS),
∴EF=AM=6
科目:初中数学 来源: 题型:
【题目】如图1,抛物线经过,两点,抛物线与x轴的另一交点为A,连接AC、BC.
求抛物线的解析式及点A的坐标;
若点D是线段AC的中点,连接BD,在y轴上是否存一点E,使得是以BD为斜边的直角三角形?若存在,求出点E的坐标,若不存在,说明理由;
如图2,P为抛物线在第一象限内一动点,过P作于Q,当PQ的长度最大时,在线段BC上找一点M使的值最小,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB的解析式为,抛物线与y轴交于点A,与x轴交于点,点P是抛物线上一动点,设点P的横坐标为m.
求抛物线的解析式;
如图,当点P在第一象限内的抛物线上时,求面积的最大值,并求此时点P的坐标;
过点A作直线轴,过点P作于点H,将绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线:.
求抛物线的对称轴;
无论a为何值,抛物线都经过两个定点,求这两个定点的坐标;
将抛物线沿中两个定点所在直线翻折,得到抛物线,当的顶点到x轴的距离为1时,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆的半径OC=2,线段BC与CD是半圆的两条弦,BC=CD,延长CD交直径BA的延长线于点E,若AE=2,则弦BD的长为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,AB=AC,,点D,E分别在AB,BC上,,点F为DE的延长线与AC的延长线的交点.
(1)求证:DE=EF
(2)判断BD和CF的数量关系,并说明理由;
(3)若,,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.
(1)求此二次函数解析式;
(2)点D为抛物线的顶点,试判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ ABC中,∠ ABC=90°,AB=BC,D在边 AC上,AE┴ BD于 E.
(1) 如图 1,作 CF⊥ BD于 F,求证:CF-AE=EF;
(2) 如图 2,若 BC=CD,求证:BD=2AE ;
(3) 如图3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,连接 CM交 BE于 N,请直接写出△BCM的面积为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com