精英家教网 > 初中数学 > 题目详情
精英家教网如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,
(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;
(3)若
AD
DC
=
1
2
,BE=3
2
,求⊙O的半径.
分析:(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;
(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可;
(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.
解答:精英家教网解:如右图所示,连接BD,
(1)∵AB是直径,
∴∠ADB=90°,
∵O是AB的中点,
∴OA=OB=OD,
∴∠OAD=∠ODA,∠ODB=∠OBD,
同理在Rt△BDC中,E是BC的中点,
∴∠EDB=∠EBD,
∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,
∴∠OAD=∠CBD,
∴∠ODA=∠EBD,
又∵∠ODA+∠ODB=90°,
∴∠EBD+∠ODB=90°,
即∠ODE=90°,
∴DE是⊙O的切线.

(2)答:△ABC的形状是等腰直角三角形.
理由是:∵E、F分别是BC、OC的中点,
∴EF是三角形OBC的中位线,
∴EF∥AB,
DE⊥BC,
OB=OD,四边形OBED是正方形,
连接OE,
OE是△ABC的中位线,OE∥AC,
∠A=∠EOB=45度,
∴∠A=∠ACB=45°,
∵∠ABC=90°,
∴△ACB是等腰直角三角形.

(3)设AD=x,CD=2x,
∵∠CDB=∠CBA=90°,∠C=∠C,
∴△CDB∽△CBA,
BC
AC
=
CD
BC

3
2
+3
2
3x
=
2x
6
2

x=2
3

AC=6
3

由勾股定理得:AB=
AC2-BC2
=6,
∴圆的半径是3.
答:⊙O的半径是3.
点评:本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案