精英家教网 > 初中数学 > 题目详情

【题目】已知点Amn)在第一象限,那么点B(-n,-m)在第_________象限.

【答案】三.

【解析】

根据第一象限内点的横坐标与纵坐标都是正数判断出mn的正负情况,再求解即可.

解:∵点Amn)在第一象限,

m0n0

-n0-m0

∴点B-n-m)在第三象限.

故答案为:三.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:

(1)①在坐标系内描出点A、B、C的位置,并求△ABC的面积;②在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;
(2)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据5,4,2,5,6的中位数是( )
A.5
B.4
C.2
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:(x2+px+2)(x﹣1)的结果中不含x的二次项,求p2017的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列多边形中,内角和与外角和相等的是(
A.四边形
B.五边形
C.六边形
D.八边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:

污水处理器型号

A型

B型

处理污水能力(吨/月)

240

180

已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.

(1)求每台A型、B型污水处理器的价格;

(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)若2x+5y﹣3=0,求4x32y的值.
(2)若26=a2=4b , 求a+b值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索发现】

如图,是一张直角三角形纸片,B=60°,小明想从中剪出一个以B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为

【拓展应用】

如图,在ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)

【灵活应用】

如图,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(B为所剪出矩形的内角),求该矩形的面积.

【实际应用】

如图,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.

查看答案和解析>>

同步练习册答案