精英家教网 > 初中数学 > 题目详情

如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=数学公式∠ABC,其中正确的结论是


  1. A.
    ①②③
  2. B.
    ①④
  3. C.
    ①②③④
  4. D.
    ①②
C
分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;
证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2-BF2=AE2-EF2,把 AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;
延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;
设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.
解答:解:∵BE是∠ABC的角平分线,
∴∠EBC=∠ABE=∠ABC,
∵∠ABC=2∠C,
∴∠ABE=∠EBC=∠C,
∴BE=EC,∴①正确;
∵∠ABE=∠ACB,∠BAC=∠EAB
∴△ABE∽△ACB,
=
∴AB2=AE×AC,
在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2-BF2=AE2-EF2
把 AB2=AE×AC代入入上式得:
AE×AC-BF2=AE2-EF2
则BF2=AC×AE-AE2+EF2=AE×(AC-AE)+EF2=AE×EC+EF2=AE×BE+EF2
即(BE-EF)2=AE×BE+EF2
∴BE2-2BE×EF+EF2=AE×BE+EF2
∴BE2-2BE×EF=AE×BE,
∴BE-2EF=AE,
BE-EF=AE+EF,
即BF=AE+EF,∴②正确;
延长AB到N,使BN=BM,连接MN,则△BMN为等腰三角形,
∴∠BNM=∠BMN,
△BNM的一个外角∠ABC=∠BNM+∠BMN=2∠BNM,
则∠BNM=∠ACB,
在△AMC与△AMN中

∴△AMC≌△AMN(AAS),
∴AN=AC=AB+BN=AB+BM,
又∵AL⊥BE,
∴∠AFB=∠LFB=90°,
在△AFB与△LFB中,

∴△AFB≌△BLF(ASA),
∴AB=BL,
则AN=AC=AB+BN=AB+BM=BM+BL,即AC=BM+BL,∴③正确;
设∠LAC=x°,∠LAM=y°,
∵AM平分∠BAC,
∴∠BAM=∠MAC=(x+y)°.
∵△AFB≌△BLF,
∴∠BAF=∠BLF,
∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,
∴x°+y°+y°=∠C+x°,
∴∠C=2y°,
∵∠ABC=2∠C,
∴∠ABC=4y°,
即∠MAL=∠ABC,
∴④正确.
故选C.
点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1.四边形ABCD是菱形,AB=6,∠B=∠MAN=60°.绕顶点A逆时针旋转∠MAN,边AM与射线BC相交于点E(点E与点B不重合),边AN与射线CD相交于点F.
(1)当点E在线段BC上时,求证:BE=CF;
(2)设BE=x,△ADF的面积为y.当点E在线段BC上时,求y与x之间的函数关系式,写出函数的定义域;
(3)连接BD,如果以A、B、F、D为顶点的四边形是平行四边形,求线段BE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=
12
∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=
 
°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=
1
4
∠ABC,其中正确的结论是(  )

查看答案和解析>>

同步练习册答案