精英家教网 > 初中数学 > 题目详情

【题目】在ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

【答案】证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)解:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC==5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【解析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.
B.(﹣2)3=8
C.﹣|﹣3|=3
D.﹣22=﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于F,交AC于E,若EG⊥BC于G,连结FG.说明四边形AFGE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于中心对称的两个图形的关系是___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长方形的面积是3a2-3ab+6a,一边长为3a,则它的另一条边长为(   )

A. 2a-b+2 B. a-b+2

C. 3a-b+2 D. 4a-b+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算中正确的是(
A.a4+a2=a6
B.(a﹣b)2=a2﹣b2
C.a6÷a3=a3
D.(﹣a32=﹣a6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(mx4)·(4xk)=-12x12则适合条件的m,k的值分别是(   )

A. m=-3,k=8 B. m=3,k=8

C. m=8,k=3 D. m=-3,k=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若∠a的补角为29°18′,则∠a的大小为(

A. 150°42′. B. 60°42′. C. 150°82′. D. 60°82′.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2﹣x﹣2=0的解是(
A.x1=1,x2=2
B.x1=1,x2=﹣2
C.x1=﹣1,x2=﹣2
D.x1=﹣1,x2=2

查看答案和解析>>

同步练习册答案