精英家教网 > 初中数学 > 题目详情
精英家教网如图,矩形ABCD中,AB=3,BC=4,如果将矩形沿对角线BD折叠,那么图中阴影部分的面积是(  )
A、
75
16
B、
25
8
C、
47
10
D、5
分析:易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.
解答:解:由翻折的性质可得:∠FBD=∠DBC,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠FBD,
∴BE=DE,
设BE=DE=x,
∴AE=4-x,
∵四边形ABCD是矩形,
∴∠A=90°
∴AE2+AB2=BE2
(4-x)2+32=x2
x=
25
8

∴S△EDB=
1
2
×
25
8
×3=
75
16

故选A.
点评:考查折叠问题;利用勾股定理得到DE的长是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案