【题目】不等式组 的解集在数轴上的表示是( )
A.
B.
C.
D.
【答案】C
【解析】解:由(1)式x<2,
由(2)x>﹣1,
所以﹣1<x<2.
故选C.
【考点精析】利用不等式的解集在数轴上的表示和一元一次不等式组的解法对题目进行判断即可得到答案,需要熟知不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).
科目:初中数学 来源: 题型:
【题目】(10分)在菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF
(1)求证:△ABE≌△ADF
(2)过点C作CG‖EA交AF于点H,交AD于点G,若∠BAE=25°,∠BCD=130°,求∠AHC
的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知y1关于x的二次函数y1=ax2+bx+c(a≠0)的图象过点(0,1),且在y轴的左侧,函数值y1随着自变量x的增大而增大.
(1)填空:a 0,b 0,c 0(用不等号连接);
(2)已知一次函数y2=ax+b,当﹣1≤x≤1时,y2的最小值为﹣且y1≤1,求y1关于x的函数解析式;
(3)设二次函数y1=ax2+bx+c的图象与x轴的一个交点为(﹣1,0),且当a≠﹣1时,一次函数y3=2cx+b﹣a与y4=x﹣c(m≠0)的图象在第一象限内没有交点,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com