精英家教网 > 初中数学 > 题目详情

如图,C为线段AB上一点,在AB的同侧作等边△ACM和等边△BCN,连接AN、BM,若∠MBN=40°,则∠ANB的大小是


  1. A.
    60°
  2. B.
    65°
  3. C.
    70°
  4. D.
    80°
D
分析:已知∠MBN=40°,易求得∠MBC=20°;通过证△MCB≌△ACN,可得∠ANC=∠MBC,再由∠ANB=60°+∠ANC,即可求得∠ANB的度数.
解答:∵△NBC是等边三角形,
∴∠NBC=60°;
∴∠MBC=60°-∠MBN=20°;
∵AC=MC,NC=BC,∠MCB=∠ACN=120°,
∴△ACN≌△MCB;(SAS)
∴∠ANC=∠MBC=20°;
∴∠ANB=∠CNB+∠ANC=60°+20°=80°.故选D.
点评:此题主要考查全等三角形的判定和性质以及等边三角形的性质.能够通过全等三角形求得∠ANC的度数是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,C为线段AB上一点,以BC为直径作⊙O,再以AO为直径作⊙M交⊙O于D、B作AB的垂线交AD的延长线于F,连接CD.若AC=2,且AC与AD的长是关于x的方程x2-2(1+
5
)
x+k=0的两个根.
①求证:AD是⊙O的切线;
②求线段DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,BM与CN交于D点.若AC=3,BC=2,则CD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中
相似三角形有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区二模)已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).

查看答案和解析>>

同步练习册答案