精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F.
(1)求证:△AEF≌△DEC;
(2)连接BF,若AF=DB,AB=AC,试判断四边形AFBD的形状,并证明你的结论.

【答案】
(1)证明:∵AF∥BC,∴∠AFC=∠FCB.

∵∠AEF=∠DEC,AE=DE,

∴△AEF≌△DEC(AAS)


(2)解:四边形AFBD是矩形.

证明如下:连接BF.

∵AF∥BC,AF=BD,

∴四边形AFBD是平行四边形.

∵△AEF≌△DEC,

∴AF=DC.

∵AF=BD,

∴BD=DC,即D是BC的中点

∵AB=AC,

∴AD⊥BC.

∴∠ADB=90°,

∴四边形AFBD是矩形.


【解析】(1)根据AAS即可证明;(2)首先证明四边形AFBD是平行四边形,再证明∠ADB=90°即可;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为(  )

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求进行计算:
(1)解方程:2x2﹣3x=0;
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题:

组别

成绩x分

频数(人数)

第1组

50≤x<60

6

第2组

60≤x<70

8

第3组

70≤x<80

14

第4组

80≤x<90

a

第5组

90≤x<100

10


(1)表中a的值为
(2)频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行海里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B运动,点Q沿CB边从点C开始以1cm/s的速度向点B运动,P、Q同时出发,用t(s)表示运动的时间(0≤t≤5).

(1)当t为何值时,以P、Q、B为顶点的三角形与△ABC相似.
(2)分别过点A,B作直线CP的垂线,垂足为D,E,设AD+BE=y,求y与t的函数关系式;并求当t为何值时,y有最大值.
(3)直接写出PQ中点移动的路径长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②.
(1)求圆柱形容器的高和匀速注水的水流速度;
(2)若“几何体”的下方圆柱的底面积为15cm2 , 求“几何体”上方圆柱体的高和底面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是⊙O的直径,MN=10,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣5ax﹣6a交x轴于A、B两点(A左B右),交y轴于点C,直线y=﹣x+b交抛物线于D,交x轴于E,且△ACE的面积为6.

(1)求抛物线的解析式;
(2)点P为CD上方抛物线上一点,过点P作x轴的平行线,交直线CD于F,设P点的横坐标为m,线段PF的长为d,求d与m的函数关系式;
(3)在(2)的条件下,过点P作PG⊥CD,垂足为G,若∠APG=∠ACO,求点P的坐标.

查看答案和解析>>

同步练习册答案