解:(1)移项得:(2x-3)
2+(2x-3)=0,
(2x-3)(2x-3+1)=0,
2x-3=0,2x-3+1=0,
解得:x
1=

,x
2=1;
(2)分解因式得:(3x+1)(x-1)=0,
3x+1=0,x-1=0,
解得:x
1=-

,x
2=1;
(3)原式=(

)
2-(

)
2-(3-2

+2)
=5-2-3+2

-2
=2

-2;
(4)原式=3

-5

+6

=4

.
分析:(1)移项后分解因式得出2x-3)(2x-3+1)=0,推出2x-3=0,2x-3+1=0,求出即可;
(2)分解因式得出(3x+1)(x-1)=0,推出3x+1=0,x-1=0,求出即可;
(3)根据平方差公式和完全平方公式展开,再合并即可;
(4)先化成最简二次根式,再合并同类二次根式.
点评:本题考查了解一元二次方程和二次根式的混合运算,解(1)(2)小题的关键是能把一元二次方程转化成一元一次方程,解(3)小题的关键是能灵活运用公式进行计算.