【题目】如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,且DE⊥AB,AC=6,则菱形ABCD的面积是( )
A. 18 B. 18 C. 9 D. 6
【答案】D
【解析】
根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据菱形的对角线互相平分求出AO,再根据直角三角形30度角的性质得OB的长,则得对角线BD的长,根据菱形面积公式:两条对角线乘积一半可得结论.
∵E为AB的中点,DE⊥AB,∴AD=DB.
∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.
∵四边形ABCD是菱形,∴BD⊥AC于O,AOAC6=3.
Rt△AOB中,∵∠OAB=30°,∴OB,∴BD=2OB=2,∴菱形ABCD的面积.
故选D.
科目:初中数学 来源: 题型:
【题目】教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为,较小的直角边长都为,斜边长都为),大正方形的面积可以表示为,也可以表示为,由此推导出重要的勾股定理:如果直角三角形两条直角边长为,斜边长为,则.
(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2)如图③,在中,是边上的高,,,,设,求的值.
(3)试构造一个图形,使它的面积能够解释,画在如图4的网格中,并标出字母所表示的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
(1)若,判断是否为奇异三角形,并说明理由;
(2)若,,求的长;
(3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第100个图中共有点的个数是
A. 15151B. 15152C. 15153D. 15154
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A.一组对边平行且有一组对角相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.一组对边平行且另一组对边相等的四边形是平行四边形
D.对角线互相垂直且相等的四边形是正方形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com