精英家教网 > 初中数学 > 题目详情
1.不解方程,判断下列方程的根的情况:
(1)x2-3x+3=0;
(2)2x2-3x=4.

分析 (1)求出b2-4ac的值,再判断即可;
(2)求出b2-4ac的值,再判断即可.

解答 解:(1)x2-3x+3=0,
∵b2-4ac=(-3)2-4×1×3=-3<0,
∴方程有没有实数根;

(2)2x2-3x=4,
∵b2-4ac=(-3)2-4×2×(-4)=41>0,
∴方程有两个不相等的实数根.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.在一次数学课上,老师写出了这样几个方程组:
①$\left\{\begin{array}{l}{2x+3y=4}\\{5x+6y=7}\end{array}\right.$,②$\left\{\begin{array}{l}{2x+3y=4}\\{3x+5y=7}\end{array}\right.$,③$\left\{\begin{array}{l}{x+3y=5}\\{2x+5y=8}\end{array}\right.$
(1)请你求出上面三个方程组的解.
(2)从这三个方程组的解中你发现了什么?请你也写出一个具有这样待征的方程组.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.甲、乙两人共有48只桔子,如果甲先给乙与乙同样多的桔子,然后乙再给甲与甲所剩桔子同样多的桔子,这时甲、乙两人的桔子数相等,设甲原有x只桔子,乙原有y只桔子,则可列二元一次方程组为(  )
A.$\left\{\begin{array}{l}{x+y=48}\\{3x=5y}\end{array}\right.$B.$\left\{\begin{array}{l}{x+y=48}\\{5x=3y}\end{array}\right.$C.$\left\{\begin{array}{l}{x+y=48}\\{x=2y}\end{array}\right.$D.$\left\{\begin{array}{l}{x+y=48}\\{y=2x}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列图形中,是轴对称图形的有(  )个.
①角;②线段;③等腰三角形;④等边三角形;⑤三角形.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=120°.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图①,矩形OABC的边OA、OC分别在坐标轴上,点B在第二象限,且点B的横、纵坐标是一元二次方程m2+m-12=0的两个实数根.把矩形OABC沿直线BE折叠,使点C落在AB边上的点F处,点E在CO边上.
(1)直接填空:B(-4,3),F(-1,3);
(2)如图②,若△BCE从该位置开始,以固定的速度沿x轴水平向右移动,直到点C与原点O重合时停止.记△BCE平移后为△B′C′E′,△B′C′E′与四边形OABE重叠部分的面积为S,请求出面积S与平移距离t之间的函数关系式,并直接写出t的取值范围;
(3)如图③,设点G为EF中点,若点M在直线CG上,点N在y轴上,是否存在这样的点M,使得以M、N、B、G为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知⊙O的半径为1,将一块腰长为$\sqrt{2}$等腰直角三角板ABO的一个顶点与圆心O重合,∠ABO=90°.设点M为⊙O上一动点,连接BM,过点B向BM下方作BN⊥BM,且BN=BM,连接MN,AN,OM,
(1)求AN的长;
(2)若NM与⊙O相切,求∠BMO的度数;
(3)当O,M,N三点在同一直线上时,求ON的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.解方程组$\left\{\begin{array}{l}{11x+3z=9}\\{2x-6y+4z=5}\\{3x+2y+z=8}\end{array}\right.$,较简便的方法是(  )
A.先消z,再解$\left\{\begin{array}{l}{2x-6y=-15}\\{19x+9y=8}\end{array}\right.$
B.先消z,再解$\left\{\begin{array}{l}{11x+3y=9}\\{10x+14y=27}\end{array}\right.$
C.先消y,再解$\left\{\begin{array}{l}{11x+3z=9}\\{11x+7z=29}\end{array}\right.$
D.先消x,再解$\left\{\begin{array}{l}{22y+2z=61}\\{66y-38z=-33}\end{array}\right.$

查看答案和解析>>

同步练习册答案