精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠DCB,交BC、AD于点E和点F.
试说明(1)△ABE是等腰三角形;
(2)四边形AECF是平行四边形.

证明:(1)∵四边形ABCD是平行四边形,
∴∠BAD=∠DCB,AD∥BC,
∵AE、CF分别平分∠BAD和∠DCB,
∴∠BAE=∠DAE=∠BAD,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴BA=BE,
∴△ABE是等腰三角形;

(2)同理可证△DCF是等腰三角形,
∴DF=DC,
由(1)知BA=BE,
∵AB=CD,AD=BC,
∴DF=BE,
∴AF=EC,
∵AF∥EC,
∴四边形AECF是平行四边形.
分析:(1)根据等腰三角形的判定,要证△ABE是等腰三角形,可证∠BAE=∠AEB,由已知和平行四边形的性质很容易证得∠BAE=∠AEB.
(2)在(1)的基础上,可证AF=EC,AF∥EC,即证四边形AECF是平行四边形.
点评:本题考查了等腰三角形的判定和平行四边形的判定:选择利用“一组对边分别平行且相等的四边形是平行四边形”来解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案