精英家教网 > 初中数学 > 题目详情
(2012•绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为
14
5n(n+1)
6
5n(n+1)
14
5n(n+1)
6
5n(n+1)
(用含n的代数式表示)
分析:可设反比例函数解析式为y=
k
x
,根据第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,可分两种情况:①与BC,AB平移后的对应边相交;②与OC,AB平移后的对应边相交;得到方程求得反比例函数解析式,再代入第n次(n>1)平移的横坐标得到矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值.
解答:解:设反比例函数解析式为y=
k
x
,则
①与BC,AB平移后的对应边相交;
与AB平移后的对应边相交的交点的坐标为(2,1.4),
则1.4=
k
2

解得k=2.8=
14
5

故反比例函数解析式为y=
14
5x

则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:
14
5n
-
14
5(n+1)
=
14
5n(n+1)

②与OC,AB平移后的对应边相交;
k-
k
2
=0.6,
解得k=
6
5

故反比例函数解析式为y=
6
5x

则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:
6
5n
-
6
5(n+1)
=
6
5n(n+1)

故第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为
14
5n(n+1)
6
5n(n+1)

故答案为:
14
5n(n+1)
6
5n(n+1)
点评:考查了反比例函数综合题,本题的关键是根据第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,分①与BC,AB平移后的对应边相交;②与OC,AB平移后的对应边相交;两种情况讨论求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,扇形DOE的半径为3,边长为
3
的菱形OABC的顶点A,C,B分别在OD,OE,
DE
上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.
(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

查看答案和解析>>

同步练习册答案