精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,若AD=1,AB=数学公式,则该矩形的两条对角线所成的锐角是


  1. A.
    30°
  2. B.
    45°
  3. C.
    60°
  4. D.
    75°
C
分析:矩形ABCD中,若AD=1,AB=,可求出对角线BD的长度,根据三边关系,确定角的度数.
解答:∵DB2=AD2+AB2,AD=1,AB=
∴DB=2.
因为矩形的对角线相等且互相平分,
所以围成的三角形三边相等,是等边三角形,两条对角线所成的锐角是60°.
故选C.
点评:解答本题关键是求出对角线的长度,利用矩形性质,矩形的对角线相等且互相平分,确定角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案