精英家教网 > 初中数学 > 题目详情
已知点A的坐标为(3,2),设点A关于y轴对称点为B,点A关于原点的对称点为C,点A绕点O顺时针旋转90°得点D.
(1)点B的坐标是
(-3,2)
(-3,2)
;点C的坐标是
(-3,-2)
(-3,-2)
;点D的坐标是
(2,-3)
(2,-3)

(2)在平面直角坐标系中分别画出点A、B、C、D;
(3)顺次连接点A、B、C、D,那么四边形ABCD的面积是
24.5
24.5
分析:(1)根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,以及利用旋转的性质即可解答本题.
(2)利用(1)中所求在坐标系中标出即可;
(3)利用矩形BWEA面积-S△CWD-S△ADE求出即可.
解答:解:(1)∵点A的坐标为(3,2),点A关于y轴对称点为B,
∴B点坐标为:(-3,2),
∵点A关于原点的对称点为C,
∴C点坐标为:(-3,-2),
∵点A绕点O顺时针旋转90°得点D,
∴D点坐标为:(2,-3),
故答案为:(-3,2),(-3,-2),(2,-3);

(2)如图所示:

(3)顺次连接点A、B、C、D,那么四边形ABCD的面积是:
矩形BWEA面积-S△CWD-S△ADE=5×6-
1
2
×1×6-
1
2
×1×5=24.5.
故答案为:24.5.
点评:本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号以及图形面积求法,正确掌握点的变换坐标性质是解题关键..
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-
2
x
的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-
2
x
,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是
 

(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦
 
,若点P的坐标为(m,0)时,则b﹦
 

(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx(a>0)与双曲线y=
kx
相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜宾)如图,直线y=x-1与反比例函数y=
kx
的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(-1,m).
(1)求反比例函数的解析式;
(2)若点P(n,-1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P的坐标为(-2,a2+1),则点P一定在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P的坐标为(1-2a,a-2),且点P到两坐标轴的距离相等,求点P的坐标.

查看答案和解析>>

同步练习册答案