精英家教网 > 初中数学 > 题目详情

如图,等边△ABC的边长为4,M为BC上一动点(M不与B、C重合),若EB=1,∠EMF=60°,点E在AB边上,点F在AC边上.设BM=x,CF=y,则当点M从点B运动到点C时,y关于x的函数图象是


  1. A.
  2. B.
  3. C.
  4. D.
B
分析:利用等边三角形的性质和已知条件求得∠BEM=∠CMF,证得△BEM∽△CMF,利用相似三角形对应边成比例得到两变量之间的函数关系式即可确定其图象.
解答:∵△ABC为等边三角形,
∴∠B=∠C=60°,
∴∠BEM+∠BME=∠FMC+∠MFC=120°,
∵∠EMF=60°,
∴∠EMB+∠FMC=120°,
∴∠BEM=∠CMF,
∴△BEM∽△CMF,

设BM=x,CF=y,
∴CM=4-x,

整理得:y=-x2+4x=-(x-2)2+4,
故选B.
点评:考查了动点问题的函数图象,此题为动点函数问题,关键列出动点的函数关系,再判断选项.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为l,取边AC的中点D,在外部画出一个新的等边三角形△CDE,如此绕点C顺时针继续下去,直到所画等边三角形的一边与△ABC的BC边重叠为止,此时这个三角形的边长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,等边△ABC的三条角平分线相交于点O,OD∥AB交BC于D,OE∥AC交BC于点E,那么这个图形中的等腰三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边△ABC的边长为6,点D、E分别在AB、AC上,且AD=AE=2,直线l过点A,且l∥BC,若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设F点运动的时间为t秒,当t>0时,直线DF交l于点G,GE的延长线与BC的延长线交于点H,AB与GH相交于点O.
(1)当t为何值时,AG=AE?
(2)请证明△GFH的面积为定值;
(3)当t为何值时,点F和点C是线段BH的三等分点?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为2,AD是△ABC的角平分线,
(1)求AD的长;
(2)取AB的中点E,连接DE,写出图中所有与BD相等的线段.(不要求说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为(  )

查看答案和解析>>

同步练习册答案