精英家教网 > 初中数学 > 题目详情
2.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.                            运动员甲测试成绩表
测试序号12345678910
成绩(分)7687758787

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S2=0.8、S2=0.4、S2=0.8)

分析 (1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
(2)易知$\overline{{x}_{甲}}$=7,$\overline{{x}_{乙}}$=7,$\overline{{x}_{丙}}$=6.3,根据方差的意义不难判断.

解答 解:(1)甲运动员测试成绩中7出现最多,故甲的众数为7;
甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,
∴甲的中位数为$\frac{7+7}{2}$=7,
∴甲测试成绩的众数和中位数都是7分;

(2)$\overline{{x}_{甲}}$=$\frac{1}{10}$×(7+6+8+7+7+5+8+7+8+7)=7,
$\overline{{x}_{乙}}$=$\frac{1}{10}$×(6+6+7+7+7+7+7+7+8+8)=7,
$\overline{{x}_{丙}}$=$\frac{1}{10}$×(5×2+6×4+7×3+8×1)=6.3,
∵$\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$,S2>S2
∴选乙运动员更合适.

点评 本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.尺规作图:把如图(实线部分)补成以虚线m为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案.(不用写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$和$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$是关于x,y的二元一次方程:ax+by=1的两个解,求$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图,AB∥CD,AB,CD与直线EF分别相交于点M和N,MP平分∠AMF,NQ平分∠DNE.求证:MP∥NQ.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行.直线l:y=x-3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图1中的点A的坐标为(1,0),图2中b的值为5$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.
Ⅰ、如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.
(1)通过证明△ADC≌△ABE,可以得到DC=BE;
Ⅱ、如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH=$\frac{1}{2}$BD,同理可得FG∥BD,FG=$\frac{1}{2}$BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;
拓展应用
(2)如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.因式分解:
(1)12xyz-9xy2
(2)4a2-12ab+9b2
(3)x4-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,∠AOB=60°,点E在∠AOB的平分线上,EC⊥OA,且CE=1,点D是OB上的一个动点,当ED取最小值时,线段CD的长度为$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.把方程$\frac{0.2x-1}{0.3}$-2=$\frac{0.1x-0.7}{0.5}$的分母化为整数的方程是(  )
A.$\frac{2x-10}{3}$-20=$\frac{x-7}{5}$B.$\frac{2x-10}{3}$-2=$\frac{x-7}{5}$C.$\frac{2x-1}{3}$-2=$\frac{x-7}{5}$D.$\frac{2x-1}{3}$-20=$\frac{x-7}{5}$

查看答案和解析>>

同步练习册答案