分析 先由点D是△ABC的边BC上的中点可知BD=CD,再根据DE⊥AB,DF⊥AC可知∠BED=∠CFD=90°,由BE=CF即可得出△BDE≌△CDF,由全等三角形的性质即可得出结论.
解答 证明:∵点D是△ABC的边BC上的中点,
∴BD=CD,
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
在Rt△BDE与Rt△CDF中,$\left\{\begin{array}{l}{BD=CD}\\{BE=CF}\end{array}\right.$,
∴△BDE≌△CDF(HL),
∴∠B=∠C.
点评 本题考查的是全等三角形的判定与性质;熟记直角三角形全等的判定方法HL是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | -2 | B. | 1 | C. | 2 | D. | -4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com