精英家教网 > 初中数学 > 题目详情
2.如图,把矩形ABCD纸片沿着过点A的直线AE折叠,使得点D落在BC边上的点F处,若∠BAF=40°,则∠DAE=25°.

分析 根据余角的性质,可得∠DAF,根据翻折的性质,可得答案.

解答 解:由余角的性质,得
∠DAF=90°-∠BAF=90°-40°=50°.
由翻折的性质,得
△DAE≌△FAE,
∠DAE=∠FAE=$\frac{1}{2}$∠DAF=$\frac{1}{2}$×50°=25°,
故答案为:25.

点评 本题考查了翻折的性质,翻折得到的图形全等是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,AB是⊙O的直径,点D是$\widehat{AE}$上一点,BD与AE交于点F.
(1)若BD平分∠ABE,求证:DE2=DF•DB;
(2)填空:在(1)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,则PD的长为4,⊙O的半径为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,∠ACB=90°,点D为AB边上一点,AD的垂直平分线交AD于点E,交BC于点F,交AC的延长线于点G,连接DF,BG,∠EDF=45°.
求证:(1)BF=AG;
(2)∠DFB=∠GBF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,Rt△ABC中,D为斜边AB的中点,AB=7,延长AC到E使得CE=CA,连结BE,则线段BE的长为7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.A、B两码头相距120千米,水速为2千米/小时,从A码头到B码头为顺水航行.当甲、乙两船同时从A、B两码头相向而行,两船3小时相遇;当甲、乙两船同时从A码头向B码头出发,1小时后,甲船比乙船多航行20千米,
(1)求甲、乙两船在静水中的速度;
(2)当甲、乙两船分别从A、B两码头同向顺流而下,甲船出发时不慎将一漂浮物掉入水中,当甲船到漂浮物的距离是到乙船距离的2倍时,求甲船从A码头出发了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.分式$\frac{a-b}{a(a-b)}$与$\frac{b}{ab}$相等吗?还有与它们相等的分式吗?如果有,请你写出两个这样的分式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=6,以点B为直角顶点作等腰直角三角形BEF,连接AE、AF,当AE⊥AF且AE:AF=1:2时,则AE的长为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:y与2x+1成正比例,且x=1时,y=2.
(1)求y与x的函数关系式;
(2)求y=10时x的值;
(3)若0≤x≤5,求y的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AB=AC,∠BAC=30°,分别以AB,AC为边作两个等边三角形△ABD和△ACE
(1)求∠DBC的度数;
(2)求证:BD=CE.

查看答案和解析>>

同步练习册答案