精英家教网 > 初中数学 > 题目详情
暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?
(1)以点O为原点,AB所在直线为x轴建立直角坐标系(如图),
M(0,5),B(2,0),C(1,0),D( 1.5,0)
设抛物线的解析式为y=ax2+k,
抛物线过点M和点B,
则k=5,a=-
5
4

∴抛物线解析式为:y=-
5
4
x2+5;

(2)∵当x=1时,y=
15
4

当x=
3
2
时,y=
35
16

∴P(1,
15
4
),Q(
3
2
35
16
)在抛物线上;
当竖直摆放5个圆柱形桶时,桶高=
3
10
×5=
3
2

3
2
15
4
3
2
35
16

∴网球不能落入桶内;

(3)设竖直摆放圆柱形桶m个时网球可以落入桶内,
由题意得:
35
16
3
10
m≤
15
4

解得:7
7
24
≤m≤12
1
2

∵m为整数,
∴m的值为8,9,10,11,12.
∴当竖直摆放圆柱形桶8,9,10,11或12个时,网球可以落入桶内.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=-
3
x+
3
与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,
求:(1)点C的坐标;
(2)图象经过A、B、C三点的二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,AB=3,AD=
5
,高DE=2,建立如图所示的平面直角坐标系,其中点A与坐标原点重合,CB的延长线与y轴交于点F,且F(0,-6).
(1)求点D的坐标;
(2)求经过点B、D、F的抛物线的解析式;
(3)判断平行四边形ABCD的对角线交点G是否在(2)中的抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

丁丁推铅球的出手高度为1.6m,在如图所示的抛物线y=-0.1(x-k)2+2.5上,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(5,0)两点,与y轴交于点B(0,5).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一个运动员投掷铅球的抛物线图,解析式为y=-
1
12
x2+
2
3
x+
5
3
(单位:米),其中A点为出手点,C点为铅球运行中的最高点,B点铅球落地点.求:
(1)出手点A离地面的高度;
(2)最高点C离地面的高度;
(3)该运动员的成绩是多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小明把一张长为20cm,宽为10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子.设剪去的正方形边长为x(cm),折成的长方体盒子的侧面积为y(cm2),底面积为S(cm2).
(1)求S与x之间的函数关系式,并求S=44(cm2)时x的值;(结果可保留根式)
(2)求y与x之间的函数关系式;在x的变化过程中,y会不会有最大值?x取何值时取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案