精英家教网 > 初中数学 > 题目详情
如图是一个长为a,宽为b的矩形.两个阴影图形都是一对长为c的底边在矩形对边上的平行四边形.则矩形中未涂阴影部分的面积为(  )
分析:易得图中平行四边形的面积等于边长为b,c的矩形的面积,把两个矩形平移到大矩形的一边,那么矩形中未涂阴影部分应为一个矩形,矩形的边长为a-c,b-c,让边长相乘即为所求的面积.
解答:解:未涂阴影部分面积为边长为a-c,b-c的空白矩形的面积,∴矩形中未涂阴影部分的面积为是(a-c)(b-c),故选C.
点评:考查列代数式解决几何图形问题,得到空白部分的图形的形状及相应边长是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图是一个长为8m,宽为6 m,高为5 m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎.在点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离应为(  )
A、
85
m
B、
89
m
C、5
5
m
D、13m

查看答案和解析>>

科目:初中数学 来源: 题型:

23、动手操作:
如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.
提出问题:
(1)观察图②,请用两种不同的方法表示阴影部分的面积;
(2)请写出三个代数式(a+b)2,(a-b)2,ab之间的一个等量关系.
问题解决:
根据上述(2)中得到的等量关系,解决下列问题:
已知:x+y=6,xy=3.求:(x-y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图①是一个长为2a,宽为2b的长方形,沿图中虚线剪开,将其分成4个小长方形,然后按图②的形状拼成一个正方形.

(1)图②中阴影部分的正方形的边长等于多少?
(2)用两种不同的方法求图②中阴影部分的面积.
(3)由图②你能写出下列三个代数式间的关系吗?
(a+b)2,(a-b)2,4ab

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图②).

(1)图②中的阴影部分的面积为
(b-a)2
(b-a)2

(2)观察图②请你写出 (a+b)2、(a-b)2、ab之间的等量关系是
(a+b)2=(a-b)2+4ab
(a+b)2=(a-b)2+4ab

(3)根据(2)中的结论,若p-q=-4,p•q=
94
,则(p+q)2=
25
25

(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了
(a+b)(3a+b)=3a2+4ab+b2
(a+b)(3a+b)=3a2+4ab+b2

(5)试画出一个几何图形,使它的面积能表示(2a+b)(a+2b)=2a2+5ab+2b2

查看答案和解析>>

同步练习册答案