精英家教网 > 初中数学 > 题目详情
(2002•朝阳区)在A、I、O、S、W、X、Z这7个字母中,既是轴对称图形,又是中心对称图形的个数是( )
A.2
B.3
C.4
D.5
【答案】分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:在同一平面内,如果把这个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,这个图形就是中心对称图形,一个图形沿着一条直线对折后两部分完全重合,这就是轴对称图形.在这7个字母中,符合这两个条件的就只有I、O、X,一共三个字母.故选B.
点评:此题考查了中心对称图形和轴对称图形的定义:
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2002•朝阳区)已知:以直线x=1为对称轴的抛物线与x轴交于A、B两点(点A在点B的左边),且经过点(4,)和(0,-).点P(x,y)在抛物线的顶点M的右侧的半支上(包括顶点M),在x轴上有一点C使△OPC是等腰三角形,OP=PC.
(1)若∠OPC是直角,求点P的坐标;
(2)当点P移动时,过点C作x轴的垂线,交直线AM于点Q,设△AQC的面积为S,求S关于x的函数解析式和自变量x的取值范围,并画出它的图象.

查看答案和解析>>

科目:初中数学 来源:2002年北京市朝阳区中考数学试卷(解析版) 题型:解答题

(2002•朝阳区)已知:以直线x=1为对称轴的抛物线与x轴交于A、B两点(点A在点B的左边),且经过点(4,)和(0,-).点P(x,y)在抛物线的顶点M的右侧的半支上(包括顶点M),在x轴上有一点C使△OPC是等腰三角形,OP=PC.
(1)若∠OPC是直角,求点P的坐标;
(2)当点P移动时,过点C作x轴的垂线,交直线AM于点Q,设△AQC的面积为S,求S关于x的函数解析式和自变量x的取值范围,并画出它的图象.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•朝阳区)已知:在内角不确定的△ABC中,AB=AC,点E、F分别在AB、AC上,EF∥BC,平行移动EF,如果梯形EBCF有内切圆.
时,sinB=
时,sinB=(提示:=);
时,sinB=
(1)请你根据以上所反映的规律,填空:当时,sinB的值等于______

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:选择题

(2002•朝阳区)在△ABC中,∠C=90°,∠A=30°,sinA+cosB的值等于( )
A.
B.1
C.
D.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2002•朝阳区)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,点E、F分别在AB、AC的延长线上,EF交⊙O于点M、N,交AD于点H,H是OD的中点,,EH-HF=2.设∠ACB=a,tana=,EH和HF是方程x2-(k+2)x+4k=0的两个实数根.
(1)求EF和HF的长;
(2)求BC的长.

查看答案和解析>>

同步练习册答案