精英家教网 > 初中数学 > 题目详情
如图,CA⊥AB,垂足为点A,AB=12,AC=6,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过
0,3,9,12
0,3,9,12
秒时,△DEB与△BCA全等.
分析:此题要分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AC=BE进行计算即可.
解答:解:①当E在线段AB上,AC=BE时,△ACB≌△BED,
∵AC=6,
∴BE=6,
∴AE=2-6=6,
∴点E的运动时间为6÷2=3(秒);

②当E在BN上,AC=BE时,
AC=12+6=18,
点E的运动时间为18÷2=9(秒);

③当E在线段AB上,AB=EB时,△ACB≌△BDE,
这时E在A点未动,因此时间为0秒;

④当E在BN上,AB=EB时,△ACB≌△BDE,
AE=12+12=24,
点E的运动时间为24÷2=12(秒),
故答案为:0,3,9,12.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)连结CA,CB,对称轴x=1与线段AB交于点D,求△CAB的铅垂高CD及S△CAB
(3)如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=
98
S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)连结CA,CB,对称轴x=1与线段AB交于点D,求△CAB的铅垂高CD及S△CAB
(3)如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=数学公式S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年海南省海口市中考数学模拟试卷(二)(解析版) 题型:解答题

如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)连结CA,CB,对称轴x=1与线段AB交于点D,求△CAB的铅垂高CD及S△CAB
(3)如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省厦门市翔安区九年级适应性考试数学卷(解析版) 题型:填空题

如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

【解析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;

(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.

 

查看答案和解析>>

同步练习册答案