精英家教网 > 初中数学 > 题目详情
14.如图,△ABD与△ACE都是等腰直角三角形,∠BAD=∠CAE=90°.
(1)求证:△ACD≌△AEB;
(2)试判断∠AFD与∠AFE的大小关系,并说明理由.

分析 (1)求出∠DAC=∠BAE,根据SAS推出两三角形全等即可;
(2)根据全等三角形的性质得出两三角形面积相等和DC=BE,根据面积公式求出AM=AN,根据角平分线性质得出即可.

解答 证明:(1)∵∠BAD=∠CAE=90°,
∴∠BAD+∠BAC=∠CAB+∠BAC,
∴∠DAC=∠BAE,
在△ACD和△AEB中,
∵$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△ACD≌△AEB(SAS);

(2)∠AFD=∠AFE,
理由是:过A作AM⊥DC于M,AN⊥BE于N,
∵△ACD≌△AEB,
∴S△ACD=S△ABE,DC=BE,
∴$\frac{1}{2}$DC×AM=$\frac{1}{2}$BE×AN,
∴AM=AN,
∴∠AFD=∠AFE.

点评 本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△ACD≌△AEB,注意:到角两边距离相等的点在角的平分线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.大家知道$\sqrt{5}$是无理数.而无理数是无限不循环小数,因此$\sqrt{5}$的小数部分我们不可能全部地写出来,我们可以写出它的整数部分,然后再表示小数部分,因为4<5<9,所以2<$\sqrt{5}$<3,所以其整数部分是2,小数部分是$\sqrt{5}$-2.已知9+$\sqrt{13}$与9-$\sqrt{13}$的小数部分分别是a和b,求a+b的相反数的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:$\frac{4}{\sqrt{5}-1}$=$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ACB与△ADE都是等腰直角三角形,∠ADE=∠ACB=90°,∠CDF=45°,DF交BE于F,求证:∠CFD=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°,得出线段BE,连接AE,若AB=2cm,CD=3cm,过B点作BF⊥AB,过点E作EG⊥AB交AB的延长线于点G,试求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,P是△ABC内一点,PB=PC,∠PBA=∠PCA,求证:AP平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,两个月的销售量的比是9:10,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.
(1)求第一个月每台彩电销售价格;
(2)这批彩电最少有多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.中国第一汽车集团公司2015年营业额高达68000亿,把数据68000用科学记数法表示为6.8×104

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=AD=8,求CD的长.

查看答案和解析>>

同步练习册答案