精英家教网 > 初中数学 > 题目详情

如图,上面是半圆,下面是长方形,左、右两边分别割去两个半径相同的扇形,列出表示下列图形的面积的代数式,并化简.

解:根据图形知:图形的面积等于边长为4a和h的长方形的面积加上半圆的面积再减去2个扇形的面积,
即表示图形的面积的代数式是:4a•h+π•(4a-a-a)2-2×=4ah+πa2
分析:先根据图形得出图形的面积等于边长为4a和h的长方形的面积加上半圆的面积再减去2个扇形的面积,分别求出各个部分的面积,即可求出答案.
点评:本题考查了整式的混合运算,扇形的面积,长方形的面积,圆的面积等知识点,关键是能把不规则图形的面积转化成规则图形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b
 
2
ab

(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:a+b≥2
ab
,并指出等号成立时的条件.
精英家教网
(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为
 
cm.
(注意:包扎时背面也有带子,打结处长度忽略不计)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,上面是半圆,下面是长方形,左、右两边分别割去两个半径相同的扇形,列出表示下列图形的面积的代数式,并化简.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1______数学公式; ②数学公式______数学公式③8+8______数学公式
通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b______数学公式
(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵数学公式,∴数学公式,∴数学公式,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:数学公式,并指出等号成立时的条件.

(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为______cm.
(注意:包扎时背面也有带子,打结处长度忽略不计)

查看答案和解析>>

科目:初中数学 来源:2009-2010学年江苏省无锡市育才中学九年级(上)期中数学试卷(解析版) 题型:解答题

在数学的学习中,我们要学会总结,不断地归纳,思考和运用,这样才能提高我们解决问题的能力,下面这个问题大家一定似曾相识:
(1)比较大小:
①2+1______;  ②______③8+8______
通过上面三个计算,我们可以初步对任意的非负实数a,b做出猜想a+b______
(2)学习了《二次根式》后我们可以对此猜想进行代数证明,请欣赏:
对于任意非负实数a,b,∵,∴,∴,只有当a=b时,等号成立.
(3)学习《圆》后,我们可以对这个结论进行几何验证:
如图,AB为半圆O的直径,C为半圆上的任意一点,(与A、B不重合)过点C作CD⊥AB,垂足为D,AD=a,DB=b.
根据图形证明:,并指出等号成立时的条件.

(4)蓦然回首,我们发现在上学期的《梯形的中位线》一节遇到的一个问题,此时运用这个结论解决是那样的简单:
如图有一个等腰梯形工件(厚度不计),其面积为1800cm2,现在要用细包装带如图那样包扎(四点为四边中点),则至少需要包装带的长度为______

查看答案和解析>>

同步练习册答案