精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求直线AC的解析式及BD两点的坐标;
(2)点Px轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点APQC为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
(1)y="3x+3" ,B的坐标(3,0),D的坐标为(1,4)
(2)(2,3)或(1+,﹣3)或(1﹣,﹣3)
(3)M点的坐标为(

试题分析:解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.
∵点A在点B的左侧,∴A、B的坐标分别为(﹣1,0),(3,0).
当x=0时,y=3.∴C点的坐标为(0,3)
设直线AC的解析式为y=k1x+b1(k1≠0),则,解得
∴直线AC的解析式为y=3x+3.

∵y=﹣x2+2x+3=﹣(x﹣1)2+4, ∴顶点D的坐标为(1,4).
(2)抛物线上有三个这样的点Q,
当点Q在Q位置时,Q的纵坐标为3,
代入抛物线可得点Q的坐标为(2,3);
当点Q在点Q位置时,点Q的纵坐标为﹣3,
代入抛物线可得点Q坐标为(1+,﹣3);
当点Q在Q位置时,点Q的纵坐标为﹣3,代入抛物线解析式可得,点QQ3的坐标为(1﹣,﹣3);
综上可得满足题意的点Q有三个,分别为:(2,3)或(1+,﹣3)或(1﹣,﹣3).
(3)过点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC与点M,则点M为所求,
过点B′作B′E⊥x轴于点E.

∵∠1和∠2都是∠3的余角,∴∠1=∠2.
∴R t △AOC∽R t △AFB,∴
∵OA=1,OB=3,OC=3,∴AC=,AB=4.
,∴BF=,∴BB′=2BF=
由∠1=∠2可得R t △AOC∽R t △B′EB,∴,∴
.∴B′E=,BE=,∴OE=BE﹣OB=﹣3=
∴点B′的坐标为(﹣).
设直线B′D的解析式为y=k2x+b2(k2≠0).∴
解得,∴直线B'D的解析式为:y=x+
联立B'D与AC的直线解析式可得:,解得
∴M点的坐标为().
点评:该题较为复杂,但是运用的是常考的知识点,例如待定系数法,二次函数顶点式转化,以及与几何图形结合等,要求学生熟练,掌握方法。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某厂销售一种专利产品,现准备从专卖店销售和电视直销两种销售方案中选择一种进行销售.若只是专卖店销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为40元/件,无论销售多少,每月还需支出房租费52500元,设月利润为w(元)(利润 = 销售额-成本-广告费).若只是电视直销,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤80),当月销量为x(件)时,每月还需缴纳x2 元的广告费,设月利润为w(元)(利润 = 销售额-成本-附加费).
(1)当= 1000时,=        元/件,w内 =        元;
(2)分别求出w、wx间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在专卖店销售的月利润最大?若是电视直销月利润的最大值与在专卖店销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在专卖店还是电视直销才能使所获月利润较大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,
(1)求演员弹跳离地面的最大高度;
 (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这表是
是否成功?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.

(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比.请你计算这个“W”图案的高与宽的比到底是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-9x2-6ax-a2+2a;(1)当此抛物线经过原点,且对称轴在y轴左侧.
①求此二次函数关系式;(2分)
②设此抛物线与x轴的另一个交点为A,顶点为P,
O为坐标原点.现有一直线l:x=m随着m的
变化从点A向点O平行移动(与点O不重合),
在运动过程中,直线l与抛物线交于点Q,
求△OPQ的面积S关于m的函数关系式;(5分)
(2)若二次函数在时有最大值-4,求a的值.(5分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)求二次函数y=x2-4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x的增大而减小;
(2)若二次函数y=x2-4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).

(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

学校召开的运动会上,同学王刚掷铅球,铅球运动过程中的高y(m)与水平的距离x(m)之间的函数关系式为,则王刚掷铅球的成绩为    m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A的坐标为(-2,0),点B的坐标为(8,0),以AB为直径作⊙O′,交轴的负半轴于点C,则点C的坐标为       ,若二次函数的图像经过点A,C,B.已知点P是该抛物线上的动点,当∠APB是锐角时,点P的横坐标的取值范围是           

查看答案和解析>>

同步练习册答案