精英家教网 > 初中数学 > 题目详情
如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).

(1)当t为何值时,PQ∥BC.
(2)设△AQP的面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(1)s;(2)t=s时,S取得最大值为cm2;(3)不存在

试题分析:(1)由PQ∥BC可得,即,解出即可;
(2)先根据勾股定理的逆定理证得∠C=90°,过P点作PD⊥AC于点D,则PD∥BC,,即,解得PD=6﹣t,即可得到S关于t的二次函数,根据二次函数的性质即可求得结果;
(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,则有SAQP=SABC=12.由(2)可知,SAQP=﹣t2+6t,则有﹣t2+6t=12,根据此方程无解,即可作出判断.
(1)∵PQ∥BC

       
解得t=
∴当t=s时,PQ∥BC  
(2)∵AB=10cm,AC=8cm,BC=6cm,
∴∠C=90°  
过P点作PD⊥AC于点D.

∴PD∥BC,


解得PD=6﹣t    
∴S=×AQ×PD=×2t×(6﹣t)
=﹣t2+6t=﹣(t﹣2+
∴当t=s时,S取得最大值,最大值为cm2 
(3)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,
则有SAQP=SABC=12.
由(2)可知,SAQP=﹣t2+6t,
∴﹣t2+6t=12,
化简得:t2﹣5t+10=0,
∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,
∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)
(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC= 4cm.D、E分别为边AB、BC的中点,连结DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在直线AQ上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为     cm(用含t的代数式表示)
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分的面积为S(cm2),求S与t的函数关系式.
(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的值(或取值范围).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求直线AC的解析式及BD两点的坐标;
(2)点Px轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点APQC为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于抛物线,当x      时,函数值y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式;
(2)求出这条抛物线上纵坐标为12的点的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,坐标系上有A(2,0)、B(4,0)两点.二次函数的图象经过这两点

(1)求这个二次函数的解析式;
(2)设该二次函数的图象的顶点为P,抛物线向上或向下平移多少个单位,则△ABP是正三角形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列表格是二次函数的自变量与函数值的对应值,判断方程为常数)的一个解的范围是          (   )

A.   B     C.  D.

查看答案和解析>>

同步练习册答案