精英家教网 > 初中数学 > 题目详情

在直角△ABC中,∠C=90°,AC=3,BC=4,那么以C为圆心与AB相切的圆的半径是________.


分析:首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.
解答:解:如图:连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵在直角△ABC中,∠C=90°,AC=3,BC=4,
∴AB=5,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,
即CD===
故答案为:
点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在直角△ABC中,AD=DE=EB,且CD2+CE2=1,则斜边AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则tan∠B=(  )
A、
3
5
B、
4
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案