精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.

(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAC=∠DCA.
∵BE⊥AC于E,DF⊥AC于F,
∴∠AEB=∠DFC=90°.
在△ABE和△CDF中,

∴△ABE≌△CDF.(AAS)

(2)四边形BFDE是平行四边形,
理由:∵△ABE≌△CDF,
∴AE=FC,BE=DF,
∵四边形ABCD是平行四边形,
∴AD=CB,AD∥CB.
∴∠DAC=∠BCA.
在△ADE和△BCF中,

∴△ADE≌△BCF,
∴DE=BF,
∴四边形BFDE是平行四边形.
分析:(1)根据“AAS”可证出△ABE≌△CDF;
(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF,再利用已知得出△ADE≌△BCF,进而得出DE=BF,即可得出四边形BFDE是平行四边形.
点评:此题考查了平行四边形的性质和全等三角形的判定及性质,熟练掌握平行四边形的性质是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案