分析 如图,AC交EF于点O,由勾股定理先求出AC的长度,根据折叠的性质可判断出RT△EOC~RT△ABC,从而利用相似三角形的对应边成比例可求出OE,再由EF=2OE可得出EF的长度.
解答 解:如图所示,AC交EF于点O,
由勾股定理知AC=2$\sqrt{5}$,![]()
又∵折叠矩形使C与A重合时有EF⊥AC,
则Rt△AOE∽Rt△ABC,
∴$\frac{OE}{BC}$=$\frac{AO}{AB}$,
∴OE=$\frac{\sqrt{5}}{2}$,
故EF=2OE=$\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出Rt△AOE∽Rt△ABC,利用相似三角形的性质得出OE的长.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 年龄组 | 12岁 | 13岁 | 14岁 | 15岁 |
| 参赛人数 | 5 | 19 | 13 | 13 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com