
猜想:

.
证明:取BC边的中点F,连接DE、DF.
∵D、E、F分别是AB、AC、BC的中点,
∴DE∥BC且

,DF∥AC且

.
∴四边形DFCE是平行四边形.
∴∠C=∠EDF,
∵∠C=∠PDQ,
∴∠PDQ=∠EDF,
∴∠PDF=∠QDE.
又∵

,

,
∴

.
∴△PDF∽△QDE.
∴∠DEQ=∠DFP.
又∵DE∥BC,DF∥AC,
∴∠DEQ=∠EHC,∠DFP=∠C.
∴∠C=∠EHC.
∴EH=EC.
∴

.
分析:取BC边的中点F,连接DE、DF,利用三角形中位线的性质得出四边形DFCE是平行四边形,进而得出△PDF∽△QDE,即可得出EH与AC之间的数量关系.
点评:此题主要考查了平行四边形的判定以及三角形中位线的性质和相似三角形的判定与性质等知识,得出△PDF∽△QDE是解题关键.