精英家教网 > 初中数学 > 题目详情
(1)解可化为一元二次方程的分式方程的基本思想是:把分式方程“转化”为___________方程.

(2)方法有:_______法或_______法.

答案:
解析:

1)整式
提示:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2012•湛江)先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化为
(x+2)(x-2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
x+2>0
x-2>0
 
x+2<0
x-2<0

解不等式组①,得x>2,
解不等式组②,得x<-2,
∴(x+2)(x-2)>0的解集为x>2或x<-2,
即一元二次不等式x2-4>0的解集为x>2或x<-2.
(1)一元二次不等式x2-16>0的解集为
x>4或x<-4
x>4或x<-4

(2)分式不等式
x-1
x-3
>0
的解集为
x>3或x<1
x>3或x<1

(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(广东湛江卷)数学(带解析) 题型:解答题

先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为
(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得

解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集为     
(2)分式不等式的解集为     
(3)解一元二次不等式2x2﹣3x<0.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(广东湛江卷)数学(解析版) 题型:解答题

先阅读理解下面的例题,再按要求解答下列问题:

例题:解一元二次不等式x2﹣4>0

解:∵x2﹣4=(x+2)(x﹣2)

∴x2﹣4>0可化为

(x+2)(x﹣2)>0

由有理数的乘法法则“两数相乘,同号得正”,得

解不等式组①,得x>2,

解不等式组②,得x<﹣2,

∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,

即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.

(1)一元二次不等式x2﹣16>0的解集为     

(2)分式不等式的解集为     

(3)解一元二次不等式2x2﹣3x<0.

 

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为 (x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,

解不等式组①,得x>2,解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集为   
(2)分式不等式的解集为   
(3)解一元二次不等式2x2﹣3x<0.

查看答案和解析>>

科目:初中数学 来源:2013年广东省中考数学模拟试卷(二十)(解析版) 题型:解答题

先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2-4>0
解:∵x2-4=(x+2)(x-2)
∴x2-4>0可化为
(x+2)(x-2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
 
解不等式组①,得x>2,
解不等式组②,得x<-2,
∴(x+2)(x-2)>0的解集为x>2或x<-2,
即一元二次不等式x2-4>0的解集为x>2或x<-2.
(1)一元二次不等式x2-16>0的解集为______;
(2)分式不等式的解集为______;
(3)解一元二次不等式2x2-3x<0.

查看答案和解析>>